
Computer Science Lecture 12, page 1 Computer Science CS377: Operating Systems

Last Class: Deadlocks!
•  Necessary conditions for deadlock:

–  Mutual exclusion
–  Hold and wait
–  No preemption
–  Circular wait

•  Ways of handling deadlock
–  Deadlock detection and recovery
–  Deadlock prevention
–  Deadlock avoidance

Computer Science Lecture 12, page 2 Computer Science CS377: Operating Systems

Today!
•  Deadlock Avoidance: Banker's algorithm

•  Synchronization wrap-up

•  Exam review

Computer Science Lecture 12, page 3 Computer Science CS377: Operating Systems

Deadlock Avoidance!
•  Claim edges: an edge from a thread to a resource that may be requested in the

future
•  Satisfying a request results in converting a claim edge to an allocation edge and

changing its direction.
•  A cycle in this extended resource allocation graph indicates an unsafe state.
•  If the allocation would result in an unsafe state, the allocation is denied even if

the resource is available.
–  The claim edge is converted to a request edge and the thread waits.

•  This solution does not work for multiple instances of the same resource.

Computer Science Lecture 12, page 4 Computer Science CS377: Operating Systems

Banker's Algorithm!
•  This algorithm handles multiple instances of the same resource.
•  Force threads to provide advance information about what

resources they may need for the duration of the execution.
•  The resources requested may not exceed the total available in the

system.
•  The algorithm allocates resources to a requesting thread if the

allocation leaves the system in a safe state.
•  Otherwise, the thread must wait.

Computer Science Lecture 12, page 5 Computer Science CS377: Operating Systems

Preventing Deadlock with Banker's
Algorithm!

class ResourceManager {!
 int n; // # threads !
 int m; // # resources!
 int avail[m], // # of available resources of each type!
 max[n,m], // # of each resource that each thread may want!
 alloc[n,m], //# of each resource that each thread is using!
 need[n,m], // # of resources that each thread might still

request!

Computer Science Lecture 12, page 6 Computer Science CS377: Operating Systems

Banker's Algorithm:Resource Allocation!
 public void synchronized allocate (int request[m], int i) {
 // request contains the resources being requested
 // i is the thread making the request

 if (request > need[i]) //vector comparison
 error(); // Can't request more than you declared
 else while (request[i] > avail)
 wait(); // Insufficient resources available

 // enough resources exist to satisfy the requests
 // See if the request would lead to an unsafe state
 avail = avail - request; // vector additions
 alloc[i] = alloc[i] + request;
 need[i] = need[i] - request;

 while (!safeState ()) {
 // if this is an unsafe state, undo the allocation and wait
 <undo the changes to avail, alloc[i], and need[i]>
 wait ();
 <redo the changes to avail, alloc[i], and need[i]>
 } }

Computer Science Lecture 12, page 7 Computer Science CS377: Operating Systems

Banker's Algorithm: Safety Check!
private boolean safeState () {
 boolean work[m] = avail[m]; // accommodate all resources
 boolean finish[n] = false; // none finished yet

 // find a process that can complete its work now
 while (find i such that finish[i] == false
 and need[i] <= work) { // vector operations
 work = work + alloc[i]
 finish[i] = true;
 }

 if (finish[i] == true for all i)
 return true;
 else
 return false;
}

•  Worst case: requires O(mn2) operations to determine if the system
is safe.

Computer Science Lecture 12, page 8 Computer Science CS377: Operating Systems

Example using Banker's Algorithm!

System snapshot:

Max Allocation Available

A B C A B C A B C

P0 0 0 1 0 0 1

P1 1 7 5 1 0 0

P2 2 3 5 1 3 5

P3 0 6 5 0 6 3

Total 2 9 9 1 5 2

Computer Science Lecture 12, page 9 Computer Science CS377: Operating Systems

Example (contd)!

• How many resources are there of type (A,B,C)?

• What is the contents of the Need matrix?

• Is the system in a safe state? Why?

A B C
P0

P1

P2

P3

Computer Science Lecture 12, page 10 Computer Science CS377: Operating Systems

Example: solutions!

• How many resources of type (A,B,C)? (3,14,11)
 resources = total + avail
• What is the contents of the need matrix?

 Need = Max - Allocation.

• Is the system in a safe state? Why?
• Yes, because the processes can be executed in the sequence P0, P2, P1, P3, even if each
process asks for its maximum number of resources when it executes.

A B C
P0 0 0 0
P1 0 7 5
P2 1 0 0
P3 0 0 2

Computer Science Lecture 12, page 11 Computer Science CS377: Operating Systems

Example (contd)!
• If a request from process P1 arrives for additional resources of (0,5,2), can the
Banker's algorithm grant the request immediately?
• What would be the new system state after the allocation?

• What is a sequence of process execution that satisfies the safety constraint?

Max Allocation Need Available
A B C A B C A B C A B C

P0 0 0 1
P1 1 7 5
P2 2 3 5
P3 0 6 5

Total

Computer Science Lecture 12, page 12 Computer Science CS377: Operating Systems

Example: solutions!
•  If a request from process P1 arrives for additional resources of (0,5,2), can the Banker's

algorithm grant the request immediately? Show the system state, and other criteria.
 Yes. Since
1.  (0,5,2) ! (1,5,2), the Available resources, and
2.  (0,5,2) + (1,0,0) = (1,5,2) ! (1,7,5), the maximum number P1 can request.
3.  The new system state after the allocation is:

and the sequence P0, P2, P1, P3 satisfies the safety constraint.

Allocation Max Available
A B C A B C A B C

P0 0 0 1 0 0 1
P1 1 5 2 1 7 5
P2 1 3 5 2 3 5
P3 0 6 3 0 6 5

1 0 0

Computer Science Lecture 12, page 13 Computer Science CS377: Operating Systems

Synchronization Wrap up!

• Low-Level Synchronization Primitives: hardware support

• What can the OS do with these low-level primitives? the user?

Advantages Disadvantages

Load/Store
Interrupt
Disable

Test&Set

Computer Science Lecture 12, page 14 Computer Science CS377: Operating Systems

High-Level Synchronization Primitives!
•  Locks:

–  Value: Initially lock is always free.
–  Acquire: Guarantees only one thread has lock; if another thread holds the

lock, the acquiring thread waits, else the thread continues
–  Release: Enables another thread to get lock. If threads are waiting, one gets

the lock, else, the lock becomes free.

•  Semaphores:
–  Value: Initialization depends on problem.
–  Wait: Decrements value, Thread continues if value " 0 (semaphore is

available), otherwise, it waits on semaphore
–  Signal: unblocks a process on the wait queue, otherwise, increments value
–  A counting semaphore enables simultaneous access to a fixed number of

resources

•  What is the relationship between semaphores and locks?

Computer Science Lecture 12, page 15 Computer Science CS377: Operating Systems

High-Level Synchronization Primitives:
Monitors!

•  Monitor Locks provide mutual exclusion to shared data.
–  Lock.Acquire -- wait until lock is free, then grab it.
–  Lock.Release -- unlock, and wake up any thread waiting in Acquire.
–  Always acquire lock before accessing shared data structure.
–  Always release lock when finished with shared data.
–  Lock is initially free.

•  A Condition Variable is a queue of threads waiting for something
inside a critical section. Operations:
–  Wait() - atomically release lock, go to sleep
–  Signal() - wake up waiting thread (if one exists) and give it the lock
–  Broadcast() - wake up all waiting threads

•  Rule: thread must hold the lock when doing condition variable
operations.

Computer Science Lecture 12, page 16 Computer Science CS377: Operating Systems

Deadlocks!
•  Necessary conditions for deadlock:

–  Mutual exclusion
–  Hold and wait
–  No preemption
–  Circular wait

•  Ways of handling deadlock
–  Deadlock detection and recovery
–  Deadlock prevention
–  Deadlock avoidance

Computer Science Lecture 12, page 17 Computer Science CS377: Operating Systems

Exam Review!

Computer Science Lecture 12, page 18 Computer Science CS377: Operating Systems

Processes and Threads!
Topics you should understand:
1.  What is a process?
2.  What is a process control block? What is it used for? What information does

it contain?
3.  What execution states can a process be in? What do they mean? What causes

a process to change execution states?
4.  How does the OS keep track of processes?
5.  What is a context switch? What happens during a context switch? What

causes a context switch to occur?
6.  What is the difference between a process and a thread?
7.  What is the difference between a kernel thread and a user-level thread?
8.  How are processes created? Fork() and Exec()

1.  Write pseudo-code for process creation using fork

Computer Science Lecture 12, page 19 Computer Science CS377: Operating Systems

CPU Scheduling!
Topics you should understand:
1.  What are FCFS, Round Robin, SJF, Multilevel Feedback Queue,

and Lottery Scheduling algorithms?
2.  What are the advantages and disadvantages of each?
3.  What is preemptive scheduling? What is non-preemptive

scheduling? Which scheduling algorithms can be preemptive?
4.  What is a time slice? What effect does a very small time slice

have? What effect does a very large time slice have?
5.  What is an I/O bound process? What is a CPU bound process?

Is there any reason to treat them differently for scheduling
purposes?

Computer Science Lecture 12, page 20 Computer Science CS377: Operating Systems

CPU Scheduling!
Things you should be able to do:
1.  Given a list of processes, their arrival time, the lengths of their

CPU and I/O bursts, and their total CPU time, you should be
able to compute their completion time and waiting time for each
scheduling algorithm we have discussed.

2.  Given a variation to a scheduling algorithm we studied, discuss
what impact you would expect that variation to have.

Computer Science Lecture 12, page 21 Computer Science CS377: Operating Systems

Synchronization!
Topics you should understand:
1.  Why do we need to synchronize processes/threads?
2.  What is mutual exclusion?
3.  What is a critical section?
4.  What is a lock? What do you need to do to use a lock correctly?
5.  What is a semaphore? What are the three things a semaphore can be used for?
6.  What is a monitor? What is a condition variable? What are the two possible

resumption semantics after a condition variable has been signaled? What are the
advantages and disadvantages of each?

7.  What is busy waiting?
8.  How can interrupts be manipulated to support the implementation of critical sections?

What are the advantages and disadvantages?
9.  What is test&set? How can a test&set instruction be used to support the

implementation of critical sections? What are the advantages and disadvantages?

Computer Science Lecture 12, page 22 Computer Science CS377: Operating Systems

Synchronization!
Things you should be able to do:

1.  Given some code that uses locks, semaphores, or monitors, you
should be able to explain whether you believe it works. In
particular, does it guarantee mutual exclusion where appropriate,
does it avoid starvation, and does it avoid deadlock?

Computer Science Lecture 12, page 23 Computer Science CS377: Operating Systems

Deadlocks!
Topics you should understand:

1.  What are the four necessary conditions for deadlock to occur?
2.  What is the difference between deadlock detection and deadlock

prevention?
3.  After detecting deadlock, what options are conceivable for

recovering from deadlock?
4.  What is a safe state? What is the difference between an unsafe

state and a deadlocked state?

Computer Science Lecture 12, page 24 Computer Science CS377: Operating Systems

Deadlocks!
Things you should be able to do:
1.  Given some code, reason about whether or not it is possible for deadlock to

occur.
2.  Given a state consisting of resources allocated to processes, processes waiting

on resources, and available resources, determine if the processes are
deadlocked.

3.  Given a state consisting of resources allocated to processes, maximum
resource requirements of processes, and available resources, determine if the
state could lead to deadlock.

4.  Given a state consisting of resources allocated to processes, maximum
resource requirements of processes, and available resources, and a request for
additional resources from a process, determine if the request can be safely
satisfied.

5.  Given some code that might deadlock, describe how you might change the
algorithm to prevent deadlock.

Computer Science Lecture 12, page 25 Computer Science CS377: Operating Systems

General Skills!
•  You should be able to read C++/Java code.

•  You will be asked to write pseudo code with synchronization.

•  You will not be asked detailed questions about any specific
operating system, such as Unix, Windows, Mac OS X ...

