The Big Picture So Far

From the Architecture to the OS to the User: Architectural
resources, OS management, and User Abstractions.

Hardware abstraction Example OS Services User abstraction

Processor Process management, Scheduling, Traps, | Process
protection, accounting, synchronization

Memory Management, Protection, virtual memory | Address spaces

/O devices Concurrency with CPU, Interrupt Terminal, mouse, printer,
handling system calls

File System File management, Persistence Files

Distributed systems Networking, security, distributed file Remote procedure calls,
system network file system

Computer Science (CS377: Operating Systems Lecture 4, page 1

Today: Process Management

* A process as the unit of execution.
* How are processes represented in the OS?

* What are possible execution states and how does the system move
from one state to another?

* How do processes communicate? Is this efficient?

Computer Science (S377: Operating Systems Lecture 4, page 2



What's in a Process?

*  Process: dynamic execution context of an executing program
. Several processes may run the same program, but each is a distinct process
with its own state (e.g., MS Word).
* A process executes sequentially, one instruction at a time
. Process state consists of at least:
=  the code for the running program,
= the static data for the running program,
= space for dynamic data (the heap), the heap pointer (HP),
= the Program Counter (PC), indicating the next instruction,
= an execution stack with the program's call chain (the stack), the stack pointer (SP)
= values of CPU registers
= aset of OS resources in use (e.g., open files)
= process execution state (ready, running, etc.).

J Computer Science (CS377: Operating Systems Lecture 4, page 3

Example Process State in Memory

What you wrote: What’s in memory
X . static data segment
void X (int b){ HP hesp :
PC> if(b==1)...
H SP
X;b=2
: , f
main(){ main; a= 2 stack
: —n. void X (intb ) {
inta=2; PC——=| if (b==1)...
X(a)
void main() {
} inta=2
X (a);
Y text segment

Process State

omputer Science (S377: Operating Systems Lecture 4, page 4




Process Execution State

» Execution state of a process indicates what it is doing

new: the OS is setting up the process state
running:  executing instructions on the CPU
ready: ready to run, but waiting for the CPU
waiting:  waiting for an event to complete
terminated: the OS is destroying this process

 As the program executes, it moves from state to state, as

a result of the program actions (e.g., system calls), OS
actions (scheduling), and external actions (interrupts).

P

New Ready Terminated

Computer Science (CS377: Operating Systems Lecture 4, page 5

Process Execution State

/

New Ready

Running

state sequence

new
Example: ready
running
void main() { waiting for I/O
printf(‘Hello World”); ready
} running
terminated
* The OS manages multiple active process using state queues (More
on this in a minute...)

Computer Science (CS377: Operating Systems Lecture 4, page 6




Process Data Structures

* Process Control Block (PCB): OS data structure to keep track of
all processes
— The PCB tracks the execution state and location of each process

— The OS allocates a new PCB on the creation of each process and places it
on a state queue

— The OS deallocates the PCB when the process terminates
* The PCB contains:

* Process state (running, waiting, etc.) < Username of owner

* Process number * List of open files

* Program Counter * Queue pointers for state queues

« Stack Pointer » Scheduling information (e.g., priority)
* General Purpose Registers * 1/O status

* Memory Management Information ...

Computer Science (CS377: Operating Systems Lecture 4, page 7

Process State Queues

* The OS maintains the PCBs of all the processes in state queues.

» The OS places the PCBs of all the processes in the same execution
state in the same queue.

* When the OS changes the state of a process, the PCB is unlinked
from its current queue and moved to its new state queue.

* The OS can use different policies to manage each queue.

« Each I/O device has its own wait queue.

Computer Science (CS377: Operating Systems Lecture 4, page 8




State Queues: Example

Ready Queue PCB X PCBL PCB A

head ptr ~ ~_] ~_]

tail ptr

Wait Queue PCB K PCB H

head ptr
tail ptr

Computer Science (CS377: Operating Systems Lecture 4, page 9

PCBs and Hardware State

 Starting and stopping processes is called a context switch, and is
a relatively expensive operation.

* The OS starts executing a ready process by loading hardware
registers (PC, SP, etc) from its PCB

* While a process is running, the CPU modifies the Program
Counter (PC), Stack Pointer (SP), registers, etc.

*  When the OS stops a process, it saves the current values of the
registers, (PC, SP, etc.) into its PCB

 This process of switching the CPU from one process to another
(stopping one and starting the next) is the context switch.

— Time sharing systems may do 100 to 1000 context switches a second.

— The cost of a context switch and the time between switches are closely
related

Computer Science (S377: Operating Systems Lecture 4, page 10




Creating a Process

* One process can create other processes to do work.
— The creator is called the parent and the new process is the child
— The parent defines (or donates) resources and privileges to its children
— A parent can either wait for the child to complete, or continue in parallel

* In Unix, the fork system call called is used to create child
Processces
— Fork copies variables and registers from the parent to the child

— The only difference between the child and the parent is the value returned
by fork

* In the parent process, fork returns the process id of the child
* In the child process, the return value is 0

— The parent can wait for the child to terminate by executing the waif system
call or continue execution

— The child often starts a new and different program within itself, via a call
to exec system call.

5§ Computer Science (S377: Operating Systems Lecture 4, page 11

Creating a Process: Example

*  When you log in to a machine running Unix, you create a shell
process.

*  Every command you type into the shell is a child of your shell
process and is an implicit fork and exec pair.

*  For example, you type emacs, the OS “forks”” a new process and
then “exec” (executes) emacs.
« Ifyou type an & after the command, Unix will run the process in

parallel with your shell, otherwise, your next shell command
must wait until the first one completes.

omputer Science (CS377: Operating Systems Lecture 4, page 12



Example Unix Program: Fork

#include <unistd.h>
#include <sys/wait.h>
#include <stdio.h>

main() {
int parentID = getpid(); /* ID of this process */
char prgname[1024];
gets(prgname); /* read the name of program we want to start */
int cid = fork();
if(cid == 0) { /* I'm the child process */
execlp( prgname, prgname, 0); /* Load the program */
/* If the program named prgname can be started, we never get
to this line, because the child program is replaced by prgname */
printf("I didn't find program %s\n", prgname);
} else { /* I'm the parent process */
sleep (1); /* Give my child time to start. */
waitpid(cid, 0, 0); /* Wait for my child to terminate. */
printf("Program %s finished\n", prgname);

Computer Science (CS377: Operating Systems Lecture 4, page 13

Example Unix Program: Explanation

fork() forks a new child process that is a copy of the parent.

execlp() replaces the program of the current process with the

named program.
sleep() suspends execution for at least the specified time.
waitpid() waits for the named process to finish execution.

gets() reads a line from a file.

Computer Science (CS377: Operating Systems Lecture 4, page 14



What is happening on the Fork

static data
HP HP
heap
SP — on the fork _SP e
parentID = 334 copy everything parentID = 334
cid = 542 \ tT , except result L cid=0
stac
main of fork main
PC—= cid = fork() C = cid = fork()
text
Parent Child

Computer Science

Note this is the only
difference between

the parent and the child
at the time of the fork.

CS377: Operating Systems

static data
heap

stack

text

Lecture 4, page 15

Process Termination

*  On process termination, the OS reclaims all resources
assigned to the process.

e In Unix

Computer Science

CS377: Operating Systems

a process can terminate itself using the exit system call.

a process can terminate a child using the kil/ system

Lecture 4, page 16



Example Unix Program: Process
Termination

#include <signal.h>
#include <unistd.h>
#include <stdio.h>

main() {
int parentID = getpid(); /* ID of this process */
int cid = fork();
if(cid == 0) { /* I'm the child process */
sleep (5); /* I'll exit myself after 5 seconds. */
printf ( "Quitting child\n" );
exit (0);
?rintf ( "Error! After exit call.!"); /* should never get here
*
} else { /* I'm the parent process */
printf ( "Type any character to kill the child.\n" );

char answer[10];
gets (answer);

if ( !kill(ecid, SIGKILL) ) {
printf("Killed the child.\n");
}r}
| Computer Science (CS377: Operating Systems Lecture 4, page 17

Cooperating Processes

* Any two process are either independent or cooperating

* Cooperating processes work with each other to accomplish a
single task.

» Cooperating processes can

— improve performance by overlapping activities or performing work in
parallel,

— enable an application to achieve a better program structure as a set of
cooperating processes, where each is smaller than a single monolithic
program, and

— easily share information between tasks.
=>» Distributed and parallel processing is the wave of the future. To

program these machines, we must cooperate and coordinate
between separate processes.

omputer Science (CS377: Operating Systems Lecture 4, page 18



Cooperating Processes: Producers and

Consumers
n = 100 //max outstanding items
in=0
out =0
producer consumer
repeat forever{ repeat forever{

//Make sure buffer not empty
nextp = produce item while in = out do no-opt
while in+1 mod n = out nextc = buffer[out]

do no-opt out = out+1 mod n
buffer[in] = nextp
in =1in+1 mod n consume nextc
} b

* Producers and consumers can communicate using message
passing or shared memory

Computer Science (S377: Operating Systems Lecture 4, page 19

Communication using Message
Passing

main()

if (fork() !'= 0) producerSR;
else consumerSR;

end
producerSR consumerSR
repeat repeat

receive(nextc, producer)
produce item nextp

consume item nextc
send(nextp, consumer)

Computer Science (S377: Operating Systems Lecture 4, page 20



Message Passing

 Distributed systems typically communicate using message
passing

» Each process needs to be able to name the other process.

* The consumer is assumed to have an infinite buffer size.

* A bounded buffer would require the tests in the previous slide, and
communication of the in and out variables (in from producer to
consumer, out from consumer to producer).

* OS keeps track of messages (copies them, notifies receiving
process, etc.).

=>»How would you use message passing to implement a
single producer and multiple consumers?

omputer Science (S377: Operating Systems Lecture 4, page 21

Communication using Shared Memory

 Establish a mapping between the process's address space to a
named memory object that may be shared across processes

* The mmap(...) systems call performs this function.

» Fork processes that need to share the data structure.

omputer Science (CS377: Operating Systems Lecture 4, page 22



Shared Memory Example

main()

mmap(..., in, out, PROT_WRITE, PROT_SHARED, ...);
in=0;

out=0;

if (fork != 0) produce();

else consumer();

end
producer consumer
repeat repeat
while in = out do no-op
produce item nextp nextc = buffer[out]

out = out+1 mod n

while in+1 mod n = out do no-opt

buffer[in] = nextp consume item nextc
in=in+1 mod n

Computer Science (CS377: Operating Systems Lecture 4, page 23

Process Management: Summary

* A process is the unit of execution.

* Processes are represented as Process Control Blocks in the OS

— PCBs contain process state, scheduling and memory management
information, etc

* A process is either New, Ready, Waiting, Running, or Terminated.
* On a uniprocessor, there is at most one running process at a time.

* The program currently executing on the CPU is changed by
performing a context switch

* Processes communicate either with message passing or shared
memory

Computer Science (CS377: Operating Systems Lecture 4, page 24




