
Computer Science Lecture 4, page 1 Computer Science CS377: Operating Systems

The Big Picture So Far!
From the Architecture to the OS to the User: Architectural

resources, OS management, and User Abstractions.

Hardware abstraction Example OS Services User abstraction
Processor Process management, Scheduling, Traps,

protection, accounting, synchronization
Process

Memory Management, Protection, virtual memory Address spaces

I/O devices Concurrency with CPU, Interrupt
handling

Terminal, mouse, printer,
system calls

File System File management, Persistence Files

Distributed systems Networking, security, distributed file
system

Remote procedure calls,
network file system

Computer Science Lecture 4, page 2 Computer Science CS377: Operating Systems

Today: Process Management!

•  A process as the unit of execution.

•  How are processes represented in the OS?

•  What are possible execution states and how does the system move
from one state to another?

•  How do processes communicate? Is this efficient?

Computer Science Lecture 4, page 3 Computer Science CS377: Operating Systems

What's in a Process?!
•  Process: dynamic execution context of an executing program
•  Several processes may run the same program, but each is a distinct process

with its own state (e.g., MS Word).
•  A process executes sequentially, one instruction at a time
•  Process state consists of at least:

!  the code for the running program,
!  the static data for the running program,
!  space for dynamic data (the heap), the heap pointer (HP),
!  the Program Counter (PC), indicating the next instruction,
!  an execution stack with the program's call chain (the stack), the stack pointer (SP)
!  values of CPU registers
!  a set of OS resources in use (e.g., open files)
!  process execution state (ready, running, etc.).

Computer Science Lecture 4, page 4 Computer Science CS377: Operating Systems

Example Process State in Memory!

What you wrote:

 void X (int b){
 if (b == 1) …
 }

 main(){
 int a = 2;
 X (a);
 }

What’s in memory

PC ->

Computer Science Lecture 4, page 5 Computer Science CS377: Operating Systems

Process Execution State!
•  Execution state of a process indicates what it is doing

 new: the OS is setting up the process state
 running: executing instructions on the CPU
 ready: ready to run, but waiting for the CPU
 waiting: waiting for an event to complete
 terminated: the OS is destroying this process

•  As the program executes, it moves from state to state, as
a result of the program actions (e.g., system calls), OS
actions (scheduling), and external actions (interrupts).

Computer Science Lecture 4, page 6 Computer Science CS377: Operating Systems

Process Execution State!

 state sequence
 new

Example: ready
 running
 void main() { waiting for I/O
 printf(‘Hello World’); ready
 } running
 terminated

•  The OS manages multiple active process using state queues (More
on this in a minute…)

Computer Science Lecture 4, page 7 Computer Science CS377: Operating Systems

Process Data Structures!
•  Process Control Block (PCB): OS data structure to keep track of

all processes
–  The PCB tracks the execution state and location of each process
–  The OS allocates a new PCB on the creation of each process and places it

on a state queue
–  The OS deallocates the PCB when the process terminates

•  The PCB contains:
•  Process state (running, waiting, etc.)
•  Process number
•  Program Counter
•  Stack Pointer
•  General Purpose Registers
•  Memory Management Information

•  Username of owner
•  List of open files
•  Queue pointers for state queues
•  Scheduling information (e.g., priority)
•  I/O status
•  …

Computer Science Lecture 4, page 8 Computer Science CS377: Operating Systems

Process State Queues!
•  The OS maintains the PCBs of all the processes in state queues.

•  The OS places the PCBs of all the processes in the same execution
state in the same queue.

•  When the OS changes the state of a process, the PCB is unlinked
from its current queue and moved to its new state queue.

•  The OS can use different policies to manage each queue.

•  Each I/O device has its own wait queue.

Computer Science Lecture 4, page 9 Computer Science CS377: Operating Systems

State Queues: Example!

Computer Science Lecture 4, page 10 Computer Science CS377: Operating Systems

PCBs and Hardware State!
•  Starting and stopping processes is called a context switch, and is

a relatively expensive operation.
•  The OS starts executing a ready process by loading hardware

registers (PC, SP, etc) from its PCB
•  While a process is running, the CPU modifies the Program

Counter (PC), Stack Pointer (SP), registers, etc.
•  When the OS stops a process, it saves the current values of the

registers, (PC, SP, etc.) into its PCB
•  This process of switching the CPU from one process to another

(stopping one and starting the next) is the context switch.
–  Time sharing systems may do 100 to 1000 context switches a second.
–  The cost of a context switch and the time between switches are closely

related

Computer Science Lecture 4, page 11 Computer Science CS377: Operating Systems

Creating a Process!
•  One process can create other processes to do work.

–  The creator is called the parent and the new process is the child
–  The parent defines (or donates) resources and privileges to its children
–  A parent can either wait for the child to complete, or continue in parallel

•  In Unix, the fork system call called is used to create child
processes
–  Fork copies variables and registers from the parent to the child
–  The only difference between the child and the parent is the value returned

by fork
*  In the parent process, fork returns the process id of the child
*  In the child process, the return value is 0

–  The parent can wait for the child to terminate by executing the wait system
call or continue execution

–  The child often starts a new and different program within itself, via a call
to exec system call.

Computer Science Lecture 4, page 12 Computer Science CS377: Operating Systems

Creating a Process: Example!
•  When you log in to a machine running Unix, you create a shell

process.
•  Every command you type into the shell is a child of your shell

process and is an implicit fork and exec pair.
•  For example, you type emacs, the OS “forks” a new process and

then “exec” (executes) emacs.
•  If you type an & after the command, Unix will run the process in

parallel with your shell, otherwise, your next shell command
must wait until the first one completes.

Computer Science Lecture 4, page 13 Computer Science CS377: Operating Systems

Example Unix Program: Fork!
#include <unistd.h>!
#include <sys/wait.h>!
#include <stdio.h>!

main() { !
 int parentID = getpid(); /* ID of this process */!
 char prgname[1024]; !
 gets(prgname); /* read the name of program we want to start */!
 int cid = fork();!
 if(cid == 0) { /* I'm the child process */!
 execlp(prgname, prgname, 0); /* Load the program */!
 /* If the program named prgname can be started, we never get !
 to this line, because the child program is replaced by prgname */!
 printf("I didn't find program %s\n", prgname);!
 } else { /* I'm the parent process */!
 sleep (1); /* Give my child time to start. */!
 waitpid(cid, 0, 0); /* Wait for my child to terminate. */!
 printf("Program %s finished\n", prgname);!
} }!

Computer Science Lecture 4, page 14 Computer Science CS377: Operating Systems

Example Unix Program: Explanation!
fork() forks a new child process that is a copy of the parent.

execlp() replaces the program of the current process with the
named program.

sleep() suspends execution for at least the specified time.

waitpid() waits for the named process to finish execution.

gets() reads a line from a file.

Computer Science Lecture 4, page 15 Computer Science CS377: Operating Systems

What is happening on the Fork!

Computer Science Lecture 4, page 16 Computer Science CS377: Operating Systems

Process Termination!
•  On process termination, the OS reclaims all resources

assigned to the process.

•  In Unix
–  a process can terminate itself using the exit system call.
–  a process can terminate a child using the kill system

Computer Science Lecture 4, page 17 Computer Science CS377: Operating Systems

Example Unix Program: Process
Termination!

#include <signal.h>!
#include <unistd.h>!
#include <stdio.h>!
main() { !
 int parentID = getpid(); /* ID of this process */!
 int cid = fork();!
 if(cid == 0) { /* I'm the child process */!
 sleep (5); /* I'll exit myself after 5 seconds. */!
 printf ("Quitting child\n");!
 exit (0);!
 printf ("Error! After exit call.!"); /* should never get here

*/!
 } else { /* I'm the parent process */!
 printf ("Type any character to kill the child.\n");!
 char answer[10];!
 gets (answer);!
 if (!kill(cid, SIGKILL)) {!
 printf("Killed the child.\n");!
} } }

Computer Science Lecture 4, page 18 Computer Science CS377: Operating Systems

Cooperating Processes!
•  Any two process are either independent or cooperating
•  Cooperating processes work with each other to accomplish a

single task.
•  Cooperating processes can

–  improve performance by overlapping activities or performing work in
parallel,

–  enable an application to achieve a better program structure as a set of
cooperating processes, where each is smaller than a single monolithic
program, and

–  easily share information between tasks.

"Distributed and parallel processing is the wave of the future. To
program these machines, we must cooperate and coordinate
between separate processes.

Computer Science Lecture 4, page 19 Computer Science CS377: Operating Systems

Cooperating Processes: Producers and
Consumers!

n = 100 //max outstanding items
in = 0
out = 0
producer consumer

 repeat forever{ repeat forever{
 … //Make sure buffer not empty
 nextp = produce item while in = out do no-opt
 while in+1 mod n = out nextc = buffer[out]
 do no-opt out = out+1 mod n
 buffer[in] = nextp …
 in = in+1 mod n consume nextc
 } }

•  Producers and consumers can communicate using message
passing or shared memory

Computer Science Lecture 4, page 20 Computer Science CS377: Operating Systems

Communication using Message
Passing!

 main()
 …
 if (fork() != 0) producerSR;
 else consumerSR;
 end

producerSR consumerSR
 repeat repeat
 … receive(nextc, producer)
 produce item nextp …
 … consume item nextc
 send(nextp, consumer) …

Computer Science Lecture 4, page 21 Computer Science CS377: Operating Systems

Message Passing!
•  Distributed systems typically communicate using message

passing
•  Each process needs to be able to name the other process.
•  The consumer is assumed to have an infinite buffer size.
•  A bounded buffer would require the tests in the previous slide, and

communication of the in and out variables (in from producer to
consumer, out from consumer to producer).

•  OS keeps track of messages (copies them, notifies receiving
process, etc.).

"How would you use message passing to implement a
 single producer and multiple consumers?

Computer Science Lecture 4, page 22 Computer Science CS377: Operating Systems

Communication using Shared Memory!

•  Establish a mapping between the process's address space to a
named memory object that may be shared across processes

•  The mmap(…) systems call performs this function.

•  Fork processes that need to share the data structure.

Computer Science Lecture 4, page 23 Computer Science CS377: Operating Systems

Shared Memory Example!
 main()
 …
 mmap(..., in, out, PROT_WRITE, PROT_SHARED, …);
 in = 0;
 out = 0;
 if (fork != 0) produce();
 else consumer();
 end

producer consumer
 repeat repeat
 … while in = out do no-op
 produce item nextp nextc = buffer[out]
 … out = out+1 mod n
 while in+1 mod n = out do no-opt …
 buffer[in] = nextp consume item nextc
 in = in+1 mod n …

Computer Science Lecture 4, page 24 Computer Science CS377: Operating Systems

Process Management: Summary!
•  A process is the unit of execution.
•  Processes are represented as Process Control Blocks in the OS

–  PCBs contain process state, scheduling and memory management
information, etc

•  A process is either New, Ready, Waiting, Running, or Terminated.
•  On a uniprocessor, there is at most one running process at a time.
•  The program currently executing on the CPU is changed by

performing a context switch
•  Processes communicate either with message passing or shared

memory

