
CMPSCI 377 Operating Systems Spring 2010

Lecture 1: January 19
Lecturer: Prashant Shenoy TA: Vimal Mathew

1.1 General information

This class is taught by professor Prashant Shenoy, at CMPSCI 142, every Tuesdays and Thursdays from
11.15am to 12.30pm. For all kind of information related to the course (syllabus, projects, etc), please visit
http://lass.cs.umass.edu/∼shenoy/courses/377/.

Although the class name is Operating Systems, this course will deal mostly with large scale computer
systems. The main question to be studied is how to build correct, reliable and high performance computer
systems. In order to answer this question, problems such as memory management, concurrency, scheduling,
etc, will be studied.

1.1.1 Getting help

Prof. Shenoy has office hours on Tuesdays and Thursdays from 12.30pm to 1.30pm, at his office (CS336).
The TA has office hours on Mondays and Fridays from 11.00am to 12.00pm, at his office (LGRT 220).

In addition to office hours, Discussion Sections will be lead by the TA, on Wednesdays from 12.20pm to
1.10pm at EDLAB 304. Attendance is very important since sample test problems will be discussed, and
the main concepts presented during the last couple of classes will be reinforced. Lecture notes will also
be available (on Prof. Shenoy’s course website). The textbook for this class is Operating System Concepts
(Silberschatz et all), 7th Edition OR 8th Edition.

1.1.2 Grading

Student’s grades will depend both on exams (2 exams, 20% of the final grade each) and on projects (40% of
the final grade). Homeworks will constitute the remaining 20%. Prof. Shenoy adopts a very strict late policy,
so please keep that in mind when deciding when to start working on your assignments. All the projects can
be done in groups of 2 or 3. You are welcome to do the projects alone too. Students will have 3 bonus
submissions and a total of 3 late days across all projects. The grading of all projects will be performed by
an autograder system, so you will have the chance to assess how well you’re doing several days before the
due date.

Do not cheat! An automatic system for finding cheaters will be used, and you will be caught.

1.2 Introduction to Operating Systems

The term Operating System (OS) is often misused. It is common, for example, for people to speak of
an OS when they are in fact referring to an OS and to a set of additional applications (eg: on Windows,
Notepad, Windows Explorer, etc).

1-1



1-2 Lecture 1: January 19

The traditional view of the area, however, defines an OS in a different way. The OS can be seen as the layer
that stands between the user-level applications and the hardware. Its main goal is to hide the complexity of
the hardware from the applications. The important concept here is abstraction: an OS abstracts architectural
details, giving programs the illusion of existing in a “homogeneous” environment. The OS effectively makes
programs believe that they live in a machine with large amounts of memory, a dedicated processor, and so
on. It is also the OS’s function to deal with managing the computer’s resourcers (eg: the OS decides which
process to runs when, for how long, etc).

1.2.1 A brief history of Operating Systems

Operating Systems evolved tremendously in the last few decades. In fact, it would probably be impossible
for someone coming directly from the 60s to perceive any resemblance between modern OSs and the OSs
from those days.

The first approach for building Operating Systems, taken during the 40s and 60s, was to allow only one user
and one task at a time. Users had to wait for a task to be finished before they could specify another task,
or even interact with the computer. In other words, not only OSs were monouser and monotask, there was
no overlapping between computation and IO.

The next step in the development of OSs was to allow batch processing. Now, multiple “jobs” could be exe-
cuted in a batch mode, such that a program was loaded, executed, output was generated, and then the cycle
restarted with the next job. Although in this type of processing there was still no interference/communication
between programs, some type of protection (from poorly or maliciously written programs, for instance) was
clearly needed.

Overlap between IO and computation was the next obvious problem to be addressed. Of course, this new
feature brought with itself a series of new challenges, such as the need for buffers, interrupt handling, etc.

Although the OSs from this time allowed users to interact with the computer while jobs were being processed,
only one task at a time was permited. Multiprogramming solved this, and it was a task of Operating System
to manage the interactions between the programs (eg: which jobs to run at each time, how to protect a
program’s memory from others, etc). All these were complex issues that effectively lead to OS failures in
the old days. Eventually, these problems brought up the attention for the need to design OSs in a scientific
manner.

During the 70s, hardware became cheap, but humans (operators, users) were expensive. During this decade,
interaction was done via terminals, in which a user could send commands to a mainframe. This was the
Unix era. Response time and thrashing became problems to be dealt with; OSs started to treat programs
and data in a more homogeneous way.

During the 80s, hardware became even cheaper. It was then that PCs became widespread, and simple
OSs, such as DOS and MacOS, were used. DOS, for example, was so simple that it didn’t have any
multiprogramming features.

From the 90s on (until today), hardware became even cheaper. Processing demands keep increasing since
then, and “real” OSs, such as WindowsNT, MacOSX and Linux, finally became available for PCs.

If there is a lesson to be learnt from all this history, it is that it’s very hard to outline trends for the future.
After all, computers advanced 9 orders of magnitude (in terms of speed, size, price) in the last 50 years.
Moore’s law also seem to be running out of steam, mainly due to fundamental physics limits. However, we
can do some guesses on what to expect in the next few years: multiple cores, unreliable memory, serious
power/heat constraints, trading off computer power for reliability, etc.


