Name: Student Id:

CMPSCI 377: Operating Systems
Homework 3 (Mock Exam): Processes, CPU Scheduling, Synchronization

General instructions:

e Do not forget to put down your name and student number on the exam books.

e The exam is closed book and closed notes.

Explain your answers clearly and be concise. Do not write long essays.

You have 90 minutes to complete the exam. Be a smart test taker, if you get stuck on one problem go on
to the next. Don’t waste your time giving details that the question does not request.

Show your work. Partial credit is possible, but only if you show intermediate steps.

Good luck.

1. Short answer questions (15 pts)

(a) (4 pts) Why do microkernel operating systems have a performance disadvantage over those that
employ monolithic kernels?

(b) (6 pts) What is a system call? Draw a figure that shows the steps involved in executing a system
call.

(c) (5 pts) Explain the steps performed by the kernel during a context switch.

2. Processes and Threads (30 pts)

(a) (10pts) Draw a state transition diagram showing how a process transitions from one state to another
during the course of its execution. Using this figure, list the states that the following program will
visit during its execution:

producer ()
{
acquire (lock);
if (full (buffer))
condition_wait (cond_var, lock);
buffer[next] = item;
release (lock);

}

Assume that lock is free, full(buffer) returns true, and that another consumer calls a condition_signal
after the condition_wait has been invoked by this producer.

(b) (10 pts) Using the fork and wait system calls, write a program in which a parent process forks two
child processes and each child forks a grandchild. The grandchildren print “I am a grandchild”
and exit. Each child process waits for their respective grandchildren to finish before exiting, and
the original process waits for its two child processes to exit. You may use pseudo code for your

solution.

(c) (10 pts) Consider a user-level threads program that uses two threads. If both threads are CPU-bound,
then how much speedup do you expect to see for your program if you move it from a uniprocessor to
a dual-core machine? Next, assume that one user-level thread is blocked on a semaphore, while the
other remains CPU-bound. Will the process see any speedup if you move it to from a uniprocessor
to a dual-core machine in this scenario? Explain your answer in in brief.

3. CPU Scheduling

(15 points)

Compute the completion times and waiting times for the following set of jobs. Assume a zero context
switch overhead, a time slice of 1 second, and that all jobs are compute bound.

Completion Time Wait Time
Job | length | arrival time || FCFS | RR | SRTF | FCFS | RR | SRTF
1| 50 0
2 | 40 0
3 | 30 0
4 1 20 5
51 10 10

4. Synchronization and Deadlocks

(40 points)

(a) (6 pts) Consider the following implementation of a lock using the test&set instruction that we

discussed in class:

Lock::Acquire ()

{

// if lock is busy,

while (testé&set (value)

}

do nothing

== 1);

Explain the purpose of the while loop in the Acquire() method. What kind of performance or
efficiency problem does this implementation suffer from?

(b) (14 pts) Consider the following system state for four processes Fy, P, P> and Ps, and three re-
sources A, B and C. Using Bankers algorithm, determine whether the following state is safe or
unsafe. Explain your answer.

Max Allocation || Available
A B C/A B C||A B C
P O O 1[0 0 O
Py 1 7 5|1 0 O
P, |2 3 5|1 3 5
P; O 6 5|0 1 3
total 2 4 71 5 3

(c) (20pts) Too Little Milk: You and your two room-mates decide to take turns to buy milk from the
grocery store to solve the problem of not having enough milk. Each time you run out of milk,
you must ensure that the three of you take turns in round-robin order: you, your room-mate 1,
your room-mate 2, you, your roomate 1, etc. Write three routines using semaphores to take turns:
YouBuyMilk, Friend1BuysMilk, and Friend2BuysMilk. Each routine must block if it is not their
turn and must proceed to buy milk otherwise. Remember to write the initialization routines, and
you may assume you always take the first turn. You can use pseudo-code for your solution.

(overflow sheet for your answers)

