
Termination Detection of Diffusing
Computations in Communicating Sequential
Processes
JAYADEV MISRA and K. M. CHANDY

The University of Texas at Austin

In this paper it is shown how the Dijkstra-Scholten scheme for termination detection in a diffusing
computation can be adapted to detect termination or deadlock in a network of communicating
sequential processes as defined by Hoare.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification-correct.
ness proofs; D.3.3 [Programming Languages]: Language Constructs--concurrent programming
structures; D.4.1 [Operating Systems]: Process Management--deadlocks

General Terms: Languages, Verification

Additional Key Words and Phrases: distributed systems, networks of processes, termination detection,
diffusing computation

1. INTRODUCTION

D i j k s t r a a n d S c h o l t e n [4] h a v e i n t r o d u c e d t h e n o t i o n of di f fusing computat ion in
a d i s t r i b u t e d s y s t e m of p r o c e s s e s a n d sugges t a n e l e g a n t a l g o r i t h m for d e t e c t i n g
t h e t e r m i n a t i o n o f a n a r b i t r a r y d i f fus ing c o m p u t a t i o n in a n y ne twork . T h e
g e n e r a l i t y of t h e s o l u t i o n m a k e s i t s u i t a b l e for a p p l i c a t i o n to a n u m b e r o f
p r o b l e m s a r i s ing in d i s t r i b u t e d p r o g r a m m i n g . Us ing th i s a l go r i t hm, D i j k s t r a [3]
g ives a s o l u t i o n to t h e p r o b l e m of d e t e r m i n i n g w h e t h e r a p roc e s s is in a kno t . W e
h a v e a p p l i e d a v a r i a t i o n of th i s a l g o r i t h m to c o m p u t e s h o r t e s t p a t h s in we igh ted ,
d i r e c t e d n e t w o r k s [2].

In th i s p a p e r , we show h o w D i j k s t r a a n d S c h o l t e n ' s s c h e m e can be u sed to
d e t e c t d e a d l o c k (a n d / o r p r o p e r t e r m i n a t i o n) in a s y s t e m of c o m m u n i c a t i n g
s e q u e n t i a l p r o c e s s e s [6]. T h i s d e a d l o c k d e t e c t i o n a l g o r i t h m h a s f o u n d use in
d i s t r i b u t e d s i m u l a t i o n [1].

W e a s s u m e t h e p r o t o c o l p r o p o s e d b y H o a r e [6]; t h a t is, a m e s s a g e can be s en t
f rom p roces s P1 to p roce s s P2 on ly i f P1 is w a i t i ng to s end to P2 a n d P2 is wa i t i ng
to r ece ive f rom P1. T h u s , a p roce s s m a y h a v e to wa i t i nde f in i t e l y to s e n d as wel l
as to rece ive .

T h i s p r o t o c o l is d i f f e ren t f rom t h a t u sed b y D i j k s t r a a n d Scho l t en . T h e y

This research was supported in part by the National Science Foundation under grant MCS-79-25383
and by ARPA Systems Modeling Parts II and III under grant N00039-78-G-0080.
Authors' address: Department of Computer Sciences, College of Natural Sciences, The University of
Texas at Austin, Austin, TX 78712.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0164-0925/82/0100-0037 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982, Pages 37--43.

38 J. Misra and K. M. Chandy

assume that a process can send a message whenever it likes. In their model a
process never has to wait to send a message.

Since our scheme is based on the Dijkstra-Scholten algorithm {abbreviated to
DSA) and on Hoare's work on communicating sequential processes (abbreviated
to CSP}, we assume familiarity with these papers [4, 6].

In DSA, network computation terminates when every process in the network
becomes idle; an idle process does not send a message unless it receives one. A
process can decide locally whether it is idle. Thus, if all processes determine that
they are idle, then the computation has terminated. On the other hand, in CSP
a process may not send a message either because it is idle (as in DSA) and has
nothing to send or because the intended recipient is not waiting to receive the
message. In the latter case the sender is unable to determine locally whether it
can ever send the message, because that depends on the state of the receiver as
well. Hence, processes must communicate their waiting status to their neighbors
(i.e., processes they can communicate with) every time they change waiting
status. However, a process's perception of its neighbor's waiting status may be
inconsistent with its neighbor's true status, because the neighbor may not yet
have informed it about the neighbor's change of state. The contribution of this
paper is to present a modification to DSA which detects termination despite this
inconsistency.

Francez [5] also has considered the distributed termination problem with
Hoare's protocol. His approach is radically different from that of Dijkstra and
Scholten in that his solution is predicated upon preanalysis of the topology and
construction of a spanning tree. One advantage of Francez's approach is that it
allows arbitrary pairs of processes to communicate spontaneously without any of
them having received prior messages.

2. PROBLEM DEFINITION

A communicating sequential process as in Hoare [6] is either executing, waiting,
or terminated. An executing process is one which can carry out some computation.
A process is waiting if it cannot execute and is waiting to communicate. A
terminated process has completed computation and hence is neither executing
nor waiting. A waiting process may become executing following a communication.
A waiting process cannot change its status until it communicates.

A waiting process may be blocked or unblocked. A waiting process P is said to
be blocked if, for every process Q such that P is waiting to send messages to Q
(receive messages from Q), Q is not waiting to receive messages from {send
messages to) P. A blocked process P waiting to communicate with Q becomes
unblocked if Q begins to wait for P. A blocked process cannot change its status
to unblocked unilaterally. We choose to consider terminated processes as being
permanently blocked and executing processes as being unblocked. Computation
has ceased in a network if and only if every component process is blocked.

The following are given:

(1) a network S of communicating sequential processes in which computation
has ceased, and

(2) a process outside S, called the environment.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

Termination Detection of Diffusing Computations in CSP 39

A new computat ion is s tar ted when the environment communicates with some
process I in S; we call I the initiator. I t is required to design a signaling scheme
to be superimposed on message communicat ion which guarantees tha t the initi-
ator ~ l l send a single signal to the environment in finite t ime after (and only
after) computat ion in S has ceased. (The te rm "blocked" refers only to messages
in the underlying computat ion and not to signals. A blocked process can send and
receive signals but not messages.)

3. OVERVIEW OF THE SIGNALING SCHEME

We use two kinds of signals: A-signals or Activity signals, which correspond to
the signals in DSA, and B-signals or Blocking signals, used by a process to
inform a neighbor 1 tha t it has changed its waiting status (from waiting-to-
send/receive to not-wait ing-to-send/receive or vice versa) for tha t neighbor.

3.1 A-Signals

We present a method of implementing DSA by creat ing/delet ing arcs ra ther than
by the use of counters. This implementat ion is logically equivalent to the use of
"cornets" in DSA. An activity graph consists of nodes which represent processes
and arcs (called activity arcs) which summarize the history of communicat ion
and A-signaling. (An activity arc (i, j) can be maintained by i h a v i n g j in a list of
its activity arc successors a n d j having i in a list of its activity arc predecessors.)
If processes i and j communicate by a message and if there are no activity arcs
current ly between i and j (in ei ther direction), a pair of activity arcs is created:
one from i to j and the other from j to i. There are no signals involved in arc
creation. An arc from i to j is destroyed b y j sending an A-signal to i (destruction
of this activity arc corresponds to i and j updating their activity arc successor and
predecessor lists, respectively). There are no activity arcs initially.

We adopt the convention tha t the environment remains passive waiting for an
A-signal from I during the computat ion of S. We assume tha t the environment
becomes blocked immediately after communicating with the initiator and remains
blocked indefinitely thereafter . A process other than the environment is said to
be engaged if and only if it has some activity arc incident on it. A process tha t is
not engaged is disengaged. Initially, the environment is engaged, and all other
processes are disengaged. When a disengaged process i communicates with a
process j , a pair of activity arcs (i, j) and (j, i) is created, thus engaging process
i; the activity arc (j, i) is defined to be a tree arc. Activity arcs other than tree
arcs are nontree arcs. The tree arc (j, i) remains a tree arc until it is deleted by
i sending an A-signal to j . Similarly, the nontree arc (i, j) remains a nontree arc
until it is deleted by j sending an A-signal to i.

3.2 B-Signals

B-signals are used by processes to inform their neighbors of their waiting status.
Every process i knows whether it is waiting to send messages to, or receive
messages from, any neighbor j . Process j maintains local Boolean variables r 1 (i)

i P r o c e s s i is a n e i g h b o r of p roce s s j i f i t is poss ib le for p rocesses i a n d j to c o m m u n i c a t e .

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

40 • J. Misra and K. M. Chandy

(and si(i)) which are t rue w h e n j "thinks" i is waiting to receive from (send to)
j. Process j ' s information about process i, (rj(i), si(i)), may be incorrect; this
happens when process i changes its waiting status for process j and has not yet
informed processj of this change. When processj receives a B-signal from process
i, it updates rj (i) and sj(i) appropriately. We associate a local Boolean variable
think-blocked(j) with process j ; think-blocked(j) is t rue if (1) process j is not
executing, (2) for every process i that j is waiting to receive from, sj(i) is false,
and (3) for every process k that j is waiting to send to, rj(k) is false, think-
blocked(j) denotes whether or not processj "thinks" it is blocked; as rj's and sj's
may be inconsistent with the true waiting status of the neighbors of process j,
think-blocked(j) may also be inconsistent with the true blocking situation of
process j. Note that, from the definition, think-blocked(j) is t rue i f j is termi-
nated.

In earlier schemes [4, 5] there was no such inconsistency between the true
status of a process and the status that it thought it was in. We show below that
the entire signaling scheme is correct even though the algorithm is based upon
(possibly inconsistent) think-blocked variables. The inconsistency regarding
think-blocked variables does not occur in DSA because each process can deter-
mine its status locally.

4. RULES OF PROCESS OPERATION

The original computation (including waiting behavior, message transmission, and
execution sequences) is not affected by signaling. The only way messages affect
the signaling is by the possible creation of activity arcs (as given in Section 3.2)
following a message transmission.

A nonexecutingprocess waits at all times to receive A- and B-signals. Hence
there can be no blocking for signal transmission. Receipt of either type of signal
results in immediate modification of the local variables of a process (r, s, or the
lists of activity arc successors), after which the value of the signal can be discarded
and the process waits to receive further signals and messages.

A process's signal transmission is carried out according to the following rules.

Rule 1 (waiting condition for transmission of B-signal). Process i waits to send
a B-signal to process j if and only if rj(i) or sj(i) is inconsistent with process i's
true waiting status. (Note that i can deduce rj(i), sj(i) from the B-signals that it
has already sent.)

Rule 2 (waiting condition for transmission of A-signal; deletion of nontree arc).
Process j waits to send an A-signal to process i, where (i, j) is a nontree arc, if
think-blocked(j) is t rue.

Rule 3 (waiting condition for transmission of an A-signal; deletion of tree arc).
Process j waits to send an A-signal to process i, where (i,j) is a tree arc, if and
only if (1) think-blocked(j) is t rue, (2) there is no other incident (i.e., outgoing
or incoming) activity arc on process j, and (3) process j has ensured (by sending
appropriate B-signals) that, for every neighbor k, rk (j) and sk (j) truly reflect the
waiting status of process j.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. I, January 1982.

Termination Detection of Diffusing Computations in CSP 41

Initial Condition. rj(i) and si(i), for every i, j , t ruly reflect the waiting status
of process i for process j. The environment is engaged and all o ther processes are
disengaged.

We sh,)w that these rules result in correct signaling to the environment.

Note. A process may wait simultaneously to send and receive A-signals, B-
signals, and messages. The algori thm makes no assumption about which trans-
mission takes place first. In particular, r, s may be out-of-date for some processes.
The only requi rement is tha t a process cannot send an A-signal deleting a tree
arc unless it has corrected all its neighbors' expectations about its own waiting
status by sending B-signals.

5. CORRECTNESS OF THE PROPOSED SCHEME

We use the following two observations for the proofs.

Observation 1. A message communicat ion between processes i and j cannot
change the engaged/disengaged status or the waiting status of any process other
than i or j ; both i and j are engaged immediately after the communication.

Observation 2. A-signals tha t delete nontree arcs and all B-signals have no
effect on the engaged/disengaged status or the waiting status of any process.

THEOREM 1

(1) The waiting status of every disengaged process i is truly reflected in rj(i),
sj(i) for every neighbor j of i.

(2) Two disengaged processes cannot be waiting to communicate by messages
with each other.

PROOF. The proof is by induction on n, which is the number of messages plus
the number of A-signals and B-signals t ransmit ted in the network.

Initially (n = 0), par t (1) holds from the initial conditions described in Section
4; par t (2) holds because the only communicat ion possible initially is between the
environment and the initiator and the environment is engaged.

Assume tha t the theorem holds for n _ N. If the (N -t- 1)th transmission is a
message, the theorem follows trivially from Observation 1. If the (N + 1)th
transmission is an A-signal tha t deletes a nontree arc, the theorem follows trivially
from Observation 2. From the induction hypothesis and Rule 1, disengaged
processes cannot send B-signals. Hence the theorem holds if the (N + 1)th
transmission is a B-signal. Now consider the case where the (N + 1)th transmis-
sion is an A-signal tha t deletes a tree arc. Suppose the A-signal was sent from
process j to process i, causing process j to become disengaged. Par t (1) is
guaranteed by Rule 3. By the induction hypothesis, for every disengaged neighbor
k of process j, rj (k), sj (k) t ruly reflect k 's waiting status prior to the (N + 1)th
transmission. The (N + 1)th transmission does not alter rj(k), sj(k), or k 's
waiting status. Hence rj(k), si(k) correctly reflect k 's waiting status after the
(N + 1)th transmission. Since think-blocked(j) is t r u e when j disengages itself,
it follows tha t immediately after the (N + 1)th transmission j and k cannot be
waiting to communicate with one another. This proves par t (2). []

ACM Transact ions on Programming Languages and Systems, Vol. 4, No. 1, J a n u a r y 1982.

42 J. Misra and K. M. Chandy

THEOREM 2. The set of engaged nodes and the set of tree arcs form a rooted
directed tree of which the environment is the root.

PROOF. The proof follows as in DSA by induction on the number of mes-
sages. []

We call this t ree the engagement tree.

THEOREM 3. The environment receives an A-signal within a finite time after
the computation ceases; at that point all processes are disengaged.

PROOF. By Rule 2, within a finite t ime after computat ion ceases rj(i) , sj(i)
t ruly reflect the waiting status of process i for process j , for all i, j . Therefore ,
think-blocked(j) is set to t r ue , for all j , within a finite t ime after computat ion
ceases. Hence, the leaves of the engagement tree disengage themselves within a
finite t ime after computat ion ceases by Rules 2 and 3. The theorem follows, as in
DSA, by induction on the height of the tree. []

The correctness of the signaling scheme follows from part (2) of T h e o r e m 1
and from The o rem 3.

6. DISCUSSION

As in DSA, it is possible to give a bound on the number of signals t ransmit ted
during a computat ion in which n messages are t ransmit ted. An A-signal deletes
an activity arc, which could only be created through a message transmission.
Hence the total number of A-signals cannot exceed the number of message
transmissions. B-signals are sent only when a process changes its waiting status.
The waiting status of a process can change only if tha t process sends or receives
a message. Therefore, p rocess j sends no more than (Mi * Nj) B-signals, where Mj
is the number of message transmissions in which process j part icipates and Nj is
the number of neighbors of process j . A simple upper bound on the number of B-
signals is the number of messages t imes the number of processes in the network.
The exact number of A- and B-signals are difficult to est imate as they depend
not only on the number of messages but also on the number of t imes think-
blocked becomes t r u e for various processes. The re are many problems for which
think-blocked becomes t r u e relatively infrequently; in these cases the signaling
overhead is low.

It should be noted tha t we do not require tha t the underlying scheduler for
message and signal transmission be fair; tha t is, we do not assume tha t a message
or signal is t ransmit ted within finite time, if bo th the sender and the receiver are
waiting to communicate. We make the following weaker assumption: if there are
one or more sender-receiver pairs waiting to communicate, then one of them
communicates in finite time.

It is sometimes convenient to run a network of processes until deadlock;
deadlock is then broken by the environment, and the processes are allowed to
run until the next deadlock. This repet i t ion of deadlock and breaking deadlock is
more efficient in some cases [1] than avoiding deadlock altogether.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

Termination Detection of Diffusing Computat ions in CSP • 43

ACKNOWLEDGMENTS

We are grateful to R. Kieburtz, S. Owicki, A. Silberschatz, and C. S. Scholten for
comments on this paper. Constructive comments of the referees helped consid-
erably in improving the exposition.

REFERENCES
1. CHANDY, K.M., AND MISRA, J. Asynchronous distributed simulation via a sequence of parallel

computations. Commun. ACM 24, 11 (April 1981), 198-206.
2. CHANDy, K.M., AND MISRA, J. On diffusing computations. Tech. Rep. TR-150, Dep. Computer

Sciences, Univ. Texas Austin, July 1980.
3. DIJKSTRA, E.W. In reaction to Ernest Chang's "Deadlock Detection." EWD 702, Plataanstraat

5, 5671 AL Nuenen, Netherlands.
4. DIJKSTRA, E.W., AND SCHOLTEN, C.S. Termination detection for diffusing computations. Inf.

Process. Lett. 11, 1 (Aug. 1980), 1-4.
5. FRANCEZ, N. Distributed termination. ACM Trans. Program. Lang. Syst. 2, 1 (Jan. 1980),

42-55.
6. HOARE, C.A.R. Communicating sequential processes. Commun. ACM21, 8 (Aug. 1978), 666-677.

Received April 1980; revised October 1980 and June 1981; accepted June 1981

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982.

