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1. INTRODUCTION 

D i j k s t r a  a n d  S c h o l t e n  [4] h a v e  i n t r o d u c e d  t h e  n o t i o n  of  di f fusing computat ion in  
a d i s t r i b u t e d  s y s t e m  of  p r o c e s s e s  a n d  sugges t  a n  e l e g a n t  a l g o r i t h m  for  d e t e c t i n g  
t h e  t e r m i n a t i o n  o f  a n  a r b i t r a r y  d i f fus ing  c o m p u t a t i o n  in a n y  ne twork .  T h e  
g e n e r a l i t y  of  t h e  s o l u t i o n  m a k e s  i t  s u i t a b l e  for  a p p l i c a t i o n  to  a n u m b e r  o f  
p r o b l e m s  a r i s ing  in  d i s t r i b u t e d  p r o g r a m m i n g .  Us ing  th i s  a l go r i t hm,  D i j k s t r a  [3] 
g ives  a s o l u t i o n  to  t h e  p r o b l e m  of  d e t e r m i n i n g  w h e t h e r  a p roc e s s  is in  a kno t .  W e  
h a v e  a p p l i e d  a v a r i a t i o n  of  th i s  a l g o r i t h m  to  c o m p u t e  s h o r t e s t  p a t h s  in we igh ted ,  
d i r e c t e d  n e t w o r k s  [2]. 

In  th i s  p a p e r ,  we show h o w  D i j k s t r a  a n d  S c h o l t e n ' s  s c h e m e  can  be  u sed  to  
d e t e c t  d e a d l o c k  ( a n d / o r  p r o p e r  t e r m i n a t i o n )  in a s y s t e m  of  c o m m u n i c a t i n g  
s e q u e n t i a l  p r o c e s s e s  [6]. T h i s  d e a d l o c k  d e t e c t i o n  a l g o r i t h m  h a s  f o u n d  use  in  
d i s t r i b u t e d  s i m u l a t i o n  [1]. 

W e  a s s u m e  t h e  p r o t o c o l  p r o p o s e d  b y  H o a r e  [6]; t h a t  is, a m e s s a g e  can  be  s en t  
f rom p roces s  P1 to  p roce s s  P2 on ly  i f  P1 is w a i t i ng  to  s end  to  P2 a n d  P2 is wa i t i ng  
to  r ece ive  f rom P1. T h u s ,  a p roce s s  m a y  h a v e  to  wa i t  i nde f in i t e l y  to  s e n d  as  wel l  
as  to  rece ive .  

T h i s  p r o t o c o l  is d i f f e ren t  f rom t h a t  u sed  b y  D i j k s t r a  a n d  Scho l t en .  T h e y  
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assume that a process can send a message whenever it likes. In their model a 
process never has to wait to send a message. 

Since our scheme is based on the Dijkstra-Scholten algorithm {abbreviated to 
DSA) and on Hoare's work on communicating sequential processes (abbreviated 
to CSP}, we assume familiarity with these papers [4, 6]. 

In DSA, network computation terminates when every process in the network 
becomes idle; an idle process does not send a message unless it receives one. A 
process can decide locally whether it is idle. Thus, if all processes determine that  
they are idle, then the computation has terminated. On the other hand, in CSP 
a process may not send a message either because it is idle (as in DSA) and has 
nothing to send or because the intended recipient is not waiting to receive the 
message. In the latter case the sender is unable to determine locally whether it 
can ever send the message, because that  depends on the state of the receiver as 
well. Hence, processes must communicate their waiting status to their neighbors 
(i.e., processes they can communicate with) every time they change waiting 
status. However, a process's perception of its neighbor's waiting status may be 
inconsistent with its neighbor's true status, because the neighbor may not yet 
have informed it about the neighbor's change of state. The contribution of this 
paper is to present a modification to DSA which detects termination despite this 
inconsistency. 

Francez [5] also has considered the distributed termination problem with 
Hoare's protocol. His approach is radically different from that of Dijkstra and 
Scholten in that his solution is predicated upon preanalysis of the topology and 
construction of a spanning tree. One advantage of Francez's approach is that it 
allows arbitrary pairs of processes to communicate spontaneously without any of 
them having received prior messages. 

2. PROBLEM DEFINITION 

A communicating sequential process as in Hoare [6] is either executing, waiting, 
or terminated. An executing process is one which can carry out some computation. 
A process is waiting if it cannot execute and is waiting to communicate. A 
terminated process has completed computation and hence is neither executing 
nor waiting. A waiting process may become executing following a communication. 
A waiting process cannot change its status until it communicates. 

A waiting process may be blocked or unblocked. A waiting process P is said to 
be blocked if, for every process Q such that  P is waiting to send messages to Q 
(receive messages from Q), Q is not waiting to receive messages from {send 
messages to) P. A blocked process P waiting to communicate with Q becomes 
unblocked if Q begins to wait for P. A blocked process cannot change its status 
to unblocked unilaterally. We choose to consider terminated processes as being 
permanently blocked and executing processes as being unblocked. Computation 
has ceased in a network if and only if every component process is blocked. 

The following are given: 

(1) a network S of communicating sequential processes in which computation 
has ceased, and 

(2) a process outside S, called the environment. 
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A new computat ion is s tar ted when the environment  communicates  with some 
process I in S; we call I the  initiator. I t  is required to design a signaling scheme 
to be superimposed on message communicat ion which guarantees tha t  the initi- 
ator  ~ l l  send a single signal to the environment  in finite t ime after (and only 
after) computat ion in S has ceased. (The te rm "blocked" refers only to messages 
in the underlying computat ion and not  to signals. A blocked process can send and 
receive signals but  not  messages.) 

3. OVERVIEW OF THE SIGNALING SCHEME 

We use two kinds of signals: A-signals or Activity signals, which correspond to 
the signals in DSA, and B-signals or Blocking signals, used by a process to 
inform a neighbor 1 tha t  it has changed its waiting status (from waiting-to- 
send/receive  to not-wait ing-to-send/receive or vice versa) for tha t  neighbor. 

3.1 A-Signals 

We present  a method  of implementing DSA by creat ing/delet ing arcs ra ther  than  
by the use of counters. This  implementat ion is logically equivalent to the use of 
"cornets"  in DSA. An activity graph consists of nodes which represent  processes 
and arcs (called activity arcs) which summarize the history of communicat ion 
and A-signaling. (An activity arc (i, j )  can be maintained by i h a v i n g j  in a list of 
its activity arc successors a n d j  having i in a list of its activity arc predecessors.) 
If processes i and j communicate  by a message and if there  are no activity arcs 
current ly between i and j (in ei ther direction), a pair of activity arcs is created: 
one from i to j and the other  from j to i. There  are no signals involved in arc 
creation. An arc from i to j is destroyed b y j  sending an A-signal to i (destruction 
of this activity arc corresponds to i and j updating their  activity arc successor and 
predecessor lists, respectively). There  are no activity arcs initially. 

We adopt  the convention tha t  the environment  remains passive waiting for an 
A-signal from I during the computat ion of S. We assume tha t  the environment  
becomes blocked immediately after  communicating with the initiator and remains 
blocked indefinitely thereafter .  A process other  than  the environment  is said to 
be engaged if and only if it has some activity arc incident on it. A process tha t  is 
not  engaged is disengaged. Initially, the environment  is engaged, and all other  
processes are disengaged. When a disengaged process i communicates  with a 
process j ,  a pair of activity arcs (i, j )  and (j, i) is created, thus engaging process 
i; the activity arc (j, i) is defined to be a tree arc. Activity arcs other  than  tree 
arcs are nontree arcs. The  tree arc (j, i) remains a tree arc until  it is deleted by 
i sending an A-signal to j .  Similarly, the nontree  arc (i, j )  remains a nontree  arc 
until  it is deleted by j sending an A-signal to i. 

3.2 B-Signals 

B-signals are used by processes to inform their  neighbors of their  waiting status. 
Every  process i knows whether  it is waiting to send messages to, or receive 
messages from, any neighbor j .  Process j maintains local Boolean variables r 1 (i) 

i P r o c e s s  i is  a n e i g h b o r  of  p roce s s  j i f  i t  is  poss ib le  for p rocesses  i a n d  j to  c o m m u n i c a t e .  

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982. 



40 • J. Misra and K. M. Chandy 

(and si(i)) which are t rue  w h e n j  "thinks" i is waiting to receive from (send to) 
j. Process j ' s  information about process i, (rj(i), si(i)), may be incorrect; this 
happens when process i changes its waiting status for process j and has not yet 
informed processj of this change. When processj receives a B-signal from process 
i, it updates rj (i) and sj(i) appropriately. We associate a local Boolean variable 
think-blocked(j) with process j ;  think-blocked(j) is t rue  if (1) process j is not 
executing, (2) for every process i that j is waiting to receive from, sj(i) is false, 
and (3) for every process k that j is waiting to send to, rj(k) is false, think- 
blocked(j) denotes whether or not processj "thinks" it is blocked; as rj's and sj's 
may be inconsistent with the true waiting status of the neighbors of process j, 
think-blocked(j) may also be inconsistent with the true blocking situation of 
process j. Note that, from the definition, think-blocked(j) is t rue  i f j  is termi- 
nated. 

In earlier schemes [4, 5] there was no such inconsistency between the true 
status of a process and the status that  it thought it was in. We show below that  
the entire signaling scheme is correct even though the algorithm is based upon 
(possibly inconsistent) think-blocked variables. The inconsistency regarding 
think-blocked variables does not occur in DSA because each process can deter- 
mine its status locally. 

4. RULES OF PROCESS OPERATION 

The original computation (including waiting behavior, message transmission, and 
execution sequences) is not affected by signaling. The only way messages affect 
the signaling is by the possible creation of activity arcs (as given in Section 3.2) 
following a message transmission. 

A nonexecutingprocess waits at all times to receive A- and B-signals. Hence 
there can be no blocking for signal transmission. Receipt of either type of signal 
results in immediate modification of the local variables of a process (r, s, or the 
lists of activity arc successors), after which the value of the signal can be discarded 
and the process waits to receive further signals and messages. 

A process's signal transmission is carried out according to the following rules. 

Rule 1 (waiting condition for transmission of B-signal). Process i waits to send 
a B-signal to process j if and only if rj(i) or sj(i) is inconsistent with process i's 
true waiting status. (Note that i can deduce rj(i), sj(i) from the B-signals that it 
has already sent.) 

Rule 2 (waiting condition for transmission of A-signal; deletion of nontree arc). 
Process j waits to send an A-signal to process i, where (i, j )  is a nontree arc, if 
think-blocked(j) is t rue.  

Rule 3 (waiting condition for transmission of an A-signal; deletion of tree arc). 
Process j waits to send an A-signal to process i, where (i,j) is a tree arc, if and 
only if (1) think-blocked(j) is t rue,  (2) there is no other incident (i.e., outgoing 
or incoming) activity arc on process j, and (3) process j has ensured (by sending 
appropriate B-signals) that, for every neighbor k, rk (j) and sk (j) truly reflect the 
waiting status of process j. 
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Initial Condition. rj(i) and si(i), for every i, j ,  t ruly reflect the waiting status 
of process i for process j. The  environment  is engaged and all o ther  processes are 
disengaged. 

We sh,)w that  these rules result  in correct  signaling to the environment.  

Note. A process may  wait simultaneously to send and receive A-signals, B- 
signals, and messages. The  algori thm makes no assumption about  which trans- 
mission takes place first. In particular, r, s may  be out-of-date for some processes. 
The  only requi rement  is tha t  a process cannot  send an A-signal deleting a tree 
arc unless it has corrected all its neighbors'  expectations about  its own waiting 
status by sending B-signals. 

5. CORRECTNESS OF THE PROPOSED SCHEME 

We use the following two observations for the proofs. 

Observation 1. A message communicat ion between processes i and j cannot  
change the engaged/disengaged status or the waiting status of any process other  
than  i or j ;  both i and j are engaged immediately after  the communication.  

Observation 2. A-signals tha t  delete nontree arcs and all B-signals have no 
effect on the engaged/disengaged status or the waiting status of any process. 

THEOREM 1 

(1) The waiting status of every disengaged process i is truly reflected in rj(i), 
sj(i) for every neighbor j of i. 

(2) Two disengaged processes cannot be waiting to communicate by messages 
with each other. 

PROOF. The  proof  is by induction on n, which is the number  of messages plus 
the number  of A-signals and B-signals t ransmit ted in the network. 

Initially (n = 0), par t  (1) holds from the initial conditions described in Section 
4; par t  (2) holds because the only communicat ion possible initially is between the 
environment  and the initiator and the environment  is engaged. 

Assume tha t  the theorem holds for n _ N. If  the (N  -t- 1)th transmission is a 
message, the theorem follows trivially from Observation 1. If  the (N  + 1)th 
transmission is an A-signal tha t  deletes a nontree  arc, the theorem follows trivially 
from Observation 2. From the induction hypothesis  and Rule 1, disengaged 
processes cannot  send B-signals. Hence the theorem holds if the (N  + 1)th 
transmission is a B-signal. Now consider the case where the (N  + 1)th transmis- 
sion is an A-signal tha t  deletes a tree arc. Suppose the A-signal was sent from 
process j to process i, causing process j to become disengaged. Par t  (1) is 
guaranteed by Rule 3. By the induction hypothesis,  for every disengaged neighbor 
k of process j, rj (k), sj (k) t ruly reflect k 's  waiting status prior to the (N  + 1)th 
transmission. The  (N  + 1)th transmission does not  alter rj(k), sj(k), or k 's  
waiting status. Hence rj(k), si(k) correctly reflect k 's  waiting status after  the 
( N  + 1)th transmission. Since think-blocked(j) is t r u e  when j disengages itself, 
it follows tha t  immediately after  the (N  + 1)th transmission j and k cannot  be 
waiting to communicate  with one another.  This  proves par t  (2). [] 
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THEOREM 2. The set of engaged nodes and the set of tree arcs form a rooted 
directed tree of which the environment is the root. 

PROOF. The  proof  follows as in DSA by induction on the number  of mes- 
sages. [] 

We call this t ree the engagement tree. 

THEOREM 3. The environment receives an A-signal within a finite time after 
the computation ceases; at that point all processes are disengaged. 

PROOF. By Rule 2, within a finite t ime after  computat ion ceases rj( i) ,  sj(i) 
t ruly reflect the waiting status of process i for process j ,  for all i, j .  Therefore ,  
think-blocked(j) is set to t r ue ,  for all j ,  within a finite t ime after  computat ion 
ceases. Hence, the leaves of the engagement  tree disengage themselves within a 
finite t ime after  computat ion ceases by Rules 2 and 3. The  theorem follows, as in 
DSA, by induction on the height of the tree. [] 

The  correctness of the signaling scheme follows from part  (2) of T h e o r e m  1 
and from The o rem 3. 

6. DISCUSSION 

As in DSA, it is possible to give a bound on the number  of signals t ransmit ted  
during a computat ion in which n messages are t ransmit ted.  An A-signal deletes 
an activity arc, which could only be created through a message transmission. 
Hence the total  number  of A-signals cannot  exceed the number  of message 
transmissions. B-signals are sent only when a process changes its waiting status. 
The  waiting status of a process can change only if tha t  process sends or receives 
a message. Therefore,  p rocess j  sends no more than  (Mi * Nj) B-signals, where Mj 
is the number  of message transmissions in which process j part icipates and Nj is 
the number  of neighbors of process j .  A simple upper  bound on the number  of B- 
signals is the number  of messages t imes the number  of processes in the network. 
The  exact number  of A- and B-signals are difficult to est imate as they depend 
not  only on the number  of messages but  also on the number  of t imes think- 
blocked becomes t r u e  for various processes. The re  are many  problems for which 
think-blocked becomes t r u e  relatively infrequently; in these cases the signaling 
overhead is low. 

It  should be noted tha t  we do not  require tha t  the underlying scheduler  for 
message and signal transmission be fair; tha t  is, we do not assume tha t  a message 
or signal is t ransmit ted  within finite time, if bo th  the sender and the receiver are 
waiting to communicate.  We make the following weaker assumption: if there  are 
one or more sender-receiver  pairs waiting to communicate,  then  one of them 
communicates  in finite time. 

It  is sometimes convenient  to run  a network of processes until  deadlock; 
deadlock is then  broken by the environment,  and the processes are allowed to 
run until  the  next  deadlock. This  repet i t ion of deadlock and breaking deadlock is 
more efficient in some cases [1] than  avoiding deadlock altogether.  
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