
A Distributed Algorithm for Detecting Resource

Deadlocks in Distributed Systems

X. M. Chandy and J. Misra
Computer Sciences Department

University of Texas; Austin, TX 78712

ABSTRACT

This paper presents a distributed algorithm to
detect deadlocks in distributed data bases.
Features of this paper are (I) a formal model of
the problem is presented, (2) the correctness of
the algorithm is proved, i.e. we show that all
true deadlocks will be detected and deadlocks will
not be reported falsely, (3) no assumptions are
made other than that messages are received
correctly and in order and (4) the algorithm is
simple.

I. INTRODUCTION

A great deal of effort has gone into developing
a distributed algorithm for detecting resource
deadlocks in distributed data bases (DDBs)
[3,4,7]. In a September 1980 paper Gligor and
Shattuck [4] state "Renewed interest in
distributed systems has resulted in the
publication of at least ten protocols for deadlock
detection. However, few of these protocols are
correct and fewer appear to be practical." In
this paper we present a solution to this much-
studied problem.

The following paragraph briefly reviews the
literature on distributed deadlock detection. A
model of deadook and an algorithm for deadlock
detection suitable for message passin 6 systems

appears in [I]. The message model of deadock
assumes that a process which is waiting to
communicate with other processes, cannot proceed
with its execution until it communicates with a_~

This work was supported in part by the
Air Force Office of Scientific Research
under grant AFOSR 81-0205 and the Univer-
sity Research Institute at The University
of Texas.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-081-8/82/008/0157 $00.75

one of the processes it is waiting for. The DDB
model considered in this paper and in [3,4,6,7]
assumes that a process can proceed only when it
receives all resources that it is waiting for.
The any/all difference in these models results in
completely different algorithms for deadlock
detection. Deadlock detection for a class of
communicating finite state machines is considered
in [5]. In this paper we are concerned with
dynamic detection of deadlocks rather than with
proving that specific communicating sequential
machines do not deadlock, which is the problem
considered in [5]. We consider the general class
of problems appearing in [3,4,7]. In particular,
the DDB model we use is derived from Menasce and

Muntz, one of the first papers in this area. For
a complete review of the literaure see [4,6,8].

The organization of this paper is as follows.
Section 2 presents a simple formal model of a
distributed system; this model is called the basic
model. Section 3 describes an algorithm to detect
deadlock in the basic model and presents its
proof. Performance issues are found in section 4.
A distributed algorithm by which a deadlocked
process can determine the identity of other
processes in the deadocked set is presented in
section 5. In section 6 we review the distributed
data base model presented by Menasce and Muntz
[3], who were about the first to treat the
problem. We then show how the basic model
algorithm can be extended to solve the DDB
problem.

2. THE BASIC MODEL

2.1. Goal of This Section

One of the difficulties with work in the area
of DDBs is in describing the model of a DDB
clearly and unambiguously. Since informal,
operational models often result in ambiguity we
~ave chosen to describe our model by axioms. Our
proofs of correctness use these axioms; they do
not rely on implicit assumptions about DDBs, The
basic model which is described in this section is
a simple, abstract model; its relevance to DDBs
may not be clear immediately, but is discussed in
detail in section 6. In the basic model, the
state of computation is represented by a graph

157

called a wait-for graph [3] in which the vertices
represent processes which may send and receive
messages. We use a wait-for graph model because
much of the earlier work is based on wait-for
graphs. The graph also helps to distinguish the
underlying DDB computation from the computation
associated with deadlock detection.

The basic model is described by two sets of
axioms: graph axioms and process axioms. Graph
axioms specify how the wait-for graph may change
over time. Graph axioms are concerned exclusively
with the underlying DDB computation and not with
the computation associated with deadlock
detection. Process axioms are concerned with the
relationship between the deadlock detection
computation and the underlying DDB computation.
The goal of this section is to present and
motivate the graph and process axioms. The model
is described and the graph axioms are motivated in
section 2.2, the graph axioms are presented in 2.3
and the problem of distributed deadlock detection
in the basic model is described in 2.4. The
problem description relies on the graph axioms
alone. The process axioms (section 2.5) are the
rules which must be obeyed by any deadlock
detection algorithm. An explanation for the
process axioms is presented in section 2.6.

2.2. Model Description

A distributed system consists of a finite set
of processes. A process is in one of two states:
active or blocked. A process Pi is blocked if it
is waiting for one or more processes to carry out
some action (such as releasing resources needed by
pi). An active process is not waiting for any
other process. When Pi needs pj to carry out some
action it sends a request to pj; when pj carries
out the requested ~ it sends a repIy to Pi"
Only active processes may carry out actions for
other processes, hence only active processes can
send replies. The state of execution of all
processes in a system is captured by a directed
graph G called the wait-for graph. There is a
one-to-one correspondence between vertices in G
and processes in the system, with vertex v i
corresponding to process Pi" Edge (vi,v j) exists
in G if and only if Pi has sent a request to pj
and has not yet received a reply.

Edge Colours: The edges in G are coloured
grey, black or white. Edge (vi,v j) is:

grey: if Pi has sent a request to pj
which pj has not received (yet).

black: if pj has received a request from
Pi and has not sent the
corresponding reply to pj.

white: if pj has sent a reply to Pi which
Pi has not received (yet).

We assume, for convenience, that there are
vertices in the wait-for graph corresponding to
terminated processes and to processes that have
yet to be created. This allows us to ignore the

addition and deletion of vertices in the wait-for
graph. Of course, unborn and terminated processes
cannot carry out actions for other processes or
request actions from other processes.

We now describe the behavior of a network of
processes in terms of coloured graphs. We use
process Pi and vertex vi, interchangeably.

2.3. Graph Axioms GI - G4

GI: (Creation): A grey edge (v:,v;) ± j
may be created if edge (vi~v j)
does not exist.

G2: (Blackening): A grey edge will
turn black after an arbitrary,
finite time.

G3: (Whitening): A black edge (vi,v j)
may turn white only if vj has no
outgoing edges. (Only active
processes may reply).

G4: (Deletion): A white edge will
disappear after an arbitrary,
finite time.

We next define the deadlock detection problem
for the basic model and present the process axioms
which must be followed by a deadlock detection
algorithm.

2.4. The Deadlock Detection Problem in the Basic
Model

A dark cycle, i.e. a cycle in which all edges
are grey or black (some may be grey and others
black), will persist forever because, it follows
from the graph axioms that edges in a dark cycle
cannot be whitened or deleted.

Problem PROBI: Construct a distributed
algorithm by which a vertex v i can detect if it is
part of a dark cycle.

The algorithm by which v i determines if it is
part of a dark cycle is called a probe
computation. In probe computations vertices send
messages, called probes, to one another; probes
are concerned with deadlock detection exclusively
and are distinct from requests and replies. We
now present axioms which describe how processes
communicate; these axioms show the relationship
between requests, replies and probes. We assume
that messages (i.e. requests, replies and probes)
are received in finite time in the order sent.

2.5. Process Axioms PI - P4

An explanation of these axioms is given in
section 2.6.

158

PI:

P2:

P3:

P4:

If a probe is sent by v i to vj
when edge (vi,v j) is grey, edge
(v~,v~) will turn black sometime j
after this probe is sent and
before it is received. If a probe
from v i is received by v: when

J
edge (vi,v j) is black then edge
(v.,v-) existed and was dark (grey

i 3
or black) at all times from the
instant at which the probe was
sent, to the instant the probe was
received.

If a probe is sent by v i to v~
when (v..,v~) is white then~(v..,v:~

J- O J- J
will disappear sometime after thls
probe is sent and before it is
received.

A vertex v i can determine
(locally) if there is an outgoing
edge (vi,v J) to any v~, though it

J
cannot d~termine ~ts colour
(locally). A vertex v~ can
determine (locally) if there Jis an
incoming black edge (vi,vj), from
any v i .

Every probe will be received in
some arbitrary finite time after
it is sent.

2.6. Explanation of the Process Axioms

PI: A probe sent by v i to vj when (vi,v j) is
grey-- must have been sent after v.. sent v.. the
request which caused grey edge "~vi,v j) ~Jo be
created. Since messages are received in-the order
sent, the request must be received by v.. (causing

J
edge (v~,v~) to turn black) before the probe is
received. The explanation for the second part of
PI is similar.

P2: A probe sent by vj to v i when edge (vi,v j)
is white must have been sent after vj sent v i tNe

reply which caused edge (vi,v j) to change colour
from black to white. Since messages are received
in the order sent, the reply must be received by
v i (causing edge (vi,v j) to disappear) before v i
receives the probe.

P3: An edge (vi,v:) can be created and deleted
by -~i, and v i alone; ~ence v~ can determine if it
exists. An edge (vi,v j) is ~lack only if vj has
received a request from v i and it has not yet sent
a corresponding reply. Hence vj is aware of black
edge (vi,vj).

P4: Basic rule of message communication.

This completes the description of the basic
model. From now on, we will use only the axioms G I
- G4 and PI - P4 to reason about the computation.
Therefore, we do not use the terms "request,"
"reply," "resource," etc. hereafter.

3. AN ALGORITHM FOR THE BASIC MODEL

3.1. Goal of This Section

The goal of this section is to present a
solution to the problem, PROBI, presented in
section 2.4: construct a distributed algorithm
(i.e. a probe computation,) by which a vertex can
Jetect if it is part of a dark cycle. In this
section we do not discuss the question of when a
vertex should initiate such a computation, this
question is considered in section 4. Section 3.2
introduces probe computations. Section 3.3
presents the desired properties of probe
computations while section 3.4 presents the probe
computation algorithm itself. Correctness proofs
are found in section 3.5.

3.2. Introduction to Probe Computations

To determine whether it is on a dark cycle, a
vertex v i initiates a computation called a probe
computation. Several vertices may initiate probe
computations and the same vertex may initiate
several probe computations. To distinguish each
probe computation, the messages and variables used
in the n-th computation initiateB by vertex i are

tagged (i,n). In the next paragraph we shall
discuss one probe computation, say the (i,n)th.
In the interests of brevity we shall not tag
messages and variables in the following discussion
with (i,n); the tag should be understood
implicitly.

A vertex v~ will send at most one probe to any
v k in one pro~e computation. The probe is said to
be meaningful if and only if edge (vj,vk) exists
and is black at the time that v k recelves the
probe. From P3, v k can determine if a probe is
meaningful.

3.3. Properties of a Probe Computation: QRPI,
QRP2

A probe computation is designed to have the
following two properties (proofs are in section
3.5):

QRPI: If the initiator of a probe
computation is on a dark cycle
when it initiates the probe
computation then the initiator
will eventually receive a
meaningful probe.

QRP2: If the initiator of a probe
computation receives a meaningful
probe then it is on a black cycle
at the time at which it receives
the probe.

159

3.4. Al~o<ithm for a Probe Computation

Algorithm for the initiator, v i

AO: Send probes along all outgoing
edges.

AI: Upon receiving the first
meaningful probe declare that "v i
is on a black cycle."

Algorithm for a vertex vj other than the
initiator

A2: Upon receiving the first
meaningful probe send probes on
all outgoing edges.

Note: Each step AO,AI,A2 of the algorithm,
once started must be completed before the process
can send or receive other messages. Therefore the
set of outgoing edges from process v i in step AO
(and process vj in step A2) do not change during
the step.

3.5. Proof of Correctness of a Probe Computation

Theorem I (Property QRPI)

If the initiator is on a dark cycle when it
initiates the probe computation then it will
eventually get a meaningful probe.

Proof: Let the initiator vi, be on a dark (and
therefore permanent) cycle C. v i will send a probe
to its successor vertex v: in C (i.e. edge (vi,v i)
is in C), and from PI t~is probe is meaningfuI;
similarly vj will send a meaningful probe to its
successor in C, and so on, and thus every vertex
on C (including the initiator) will eventually
receive a meaningful probe.

Theorem 2 (Property QRP2)

If the initiator receives a meaningful probe
then it is on a black cycle when this probe is
received.

Proof: The initiator is the only vertex which
can send a probe without having received a
meaningful probe (follows from step A2 of the
algorithm). Hence if the initiator v i receives a
meaningful probe, there exists a finite sequence
v v where (I) v~,~ = Vj(n) : v i and
.J~uJ J~uJ. ~ . JkU~
~z) Vi(k) recelves a meanlng~ui probe from vj(k I)
at ti~e %k' and t(k-1) < t(k), k = I,..n-I. let
e denote the edge (V.(k 1),V~tk)). We will prove
t~e following asser@ioi fo~ ~ all k, 1<k<n by
induction on k: at time t(k) the edges

el,e2,...,e k are all black. The theorem then
follows by setting k=n in this assertion. For
k=1, the assertion follows from the definition of
meaningful probe. Now inductively assume that

el,e2,..,eK, K<n, are all black at t(K); we will
prove that el,e 2 eK+ I are all black at t(K+1).
We first prove that eK+ I exists in the interval
[t(K), t(K+1)] and that it is black at t(K+1).
From step A2 of the algorithm, e K existed at time
t(K). From the definition of meaningful probe,
eK+ I exists and is black at a later time t(K+1).
From PI, eK+ I existed from the instant t' that
Vj(K) sent the probe to time t(K+1) at which

[~)t I received the probe. Note
+~ < t(K+1). From the algorithm (see note

below algorithm) this edge existed at all times
from t(K) to t'. Hence eK+ I exists at all times
from t(K) to t(K+1). We now prove that edges
eo,..,e K existed and were black in this interval.
This follows from the observation that if e k
exists in the interval [t(K),t(K+1)], then ek_ I
exists and remains black in this interval (from
induction hypothesis and G3), for k = I K.
This proves the assertion.

We have shown that a probe computation
satisfies the desired properties presented in
section 3.3. In the next section we discuss
issues related to performance.

4. PERFORMANCE ISSUES

4.1. Goal Of This Section

In section 3 we presented an algorithm (probe
computation) by which a vertex can determine if it
is on a dark cycle. In this section we will begin
by discussing the question of when a vertex should
initiate a probe computation (4.2). The volume of
message traffic associated with probe computations
and methods for reducing the number of probe
computations are discussed in section 4.3.

4.2. When Should a Vertex Initiate a Probe
Computation?

It is sufficient for any one vertex on a dark
cycle to detect that it is deadlocked provided
this vertex later informs all other vertices on

the dark cycle that they are deadlocked too. An
algorithm by which a deadlocked vertex informs
other vertices that they too are deadlocked is
presented in section 5. Therefore, in this
section we need only be concerned with an
initiation rule by which at least one vertex in a
dark cycle will detect deadlock.

We employ the following initiation rule: A
vertex v i initiates a probe computation when any
outgoing edge (vi,v~) is added to the wait-for
graph. With this r~le, if the addition of edge
(vi,v j) creates a dark cycle in the wait-for
graph, then v i will detect that it is on a dark
cycle, and hence deadlocked. Rules which yield
better performance are treated in the next
section.

160

4.3. Performance Aspects of the Algorithm

Recall that to distinguish probe computations
initiated by different vertices, and by the same
vertex at different times we tag the n-th probe
computation initiated by v i with (i,n), i.e. all
probes and variables associated with that
computation are tagged (i,n). If probe
computation (i,n) is initiated, all probe
computations (i,k) with k<n may be ignored.
Therefore, every vertex need only keep track of
one, (the latest) probe computation initiated by
each vertex. Hence every process must keep track
of N probe computations where N is the number of
vertices in the graph. For a given probe
computation, a vertex sends only one probe on an~
outgoing edge. Hence, there can be at most N

probes in a single probe computation.

The number of probe computations initiated can
be reduced by having a vertex initiate a probe
computation only if an outgoing edge (v~,v~) has ± j
been in existence continuously for some tlme T,
where T is a performance parameter. If edge
(vi'v~)a is deleted before T time units have
elapsed then v i has avoided initiating a probe
computation. Issues related to determining the
optimum value of T are found in [6]. The basic
tradeoff is that if T is too small too many probe
computations are initiated and if T is too large
the time taken to detect deadlock (which is at
least T) is too large.

5. PROPAGATING WAIT-FOR GRAPH INFORMATION TO
DEADLOCKED VERTICES

5.1. Goal of This Section

A distributed algorithm by which a vertex can
determine all permanent black paths leading from
it is presented in this section; the permanent
black paths form the deadlocked portion of the
wait-for graph, and determining the edges and
vertices in the deadlocked portion of the graph is
useful in breaking deadlocks. The question of how
deadlocks should be broken is not treated here;
the reader is encouraged to read [3,6].

5.2. Computation to Determine the Wait-For Graph
(WFGD Computation)

Messages in a WFGD computation consist of sets
of edges. A message M sent to a vertex v; is a
set containing only edges on permanent blac~paths
(i.e. paths all of whose edges are black and are
guaranteed to remain black) from vj. Each vertex
v; has a local variable Sj, which-is the set of
e~ges (that vj is aware of) on permanent black
paths leading from vj. Initially Sj is empty, for
all j. After the initiator v i of a probe
computation receives a meaningful probe, it
declares that it is on a black cycle and
thereafter sends a message M = {(vj,vi)} to every
vertex v~ if edge (v~,v~) is blac~ Since v~ is
on a black cycle (~,v i) must be permanently
black. On recelvlng a message M, vj sets

S~ = S; M and thereafter sends M' where
MV : {~Vk,V~)} S~ to every vertex v k where
(Vk,V j) is ½lack, Jif it has not already sent the
same message, M' to v k. Since M only contains
edges on permanent, black paths leading from vj,
M' only contains edges on permanent black patNs
leading from v k. It is evident that every vertex
will determine all permanent black paths leading
from it in finite time. A WFGD computation will
cease because a vertex never sends the same
message (set of edges) twice to another vertex.

6. THE DISTRIBUTED DATA BASE PROBLEM

6.1. Goal of This Section

We have presented and proved an algorithm for
the basic model. We now show how the algorithm for
the basic model can be extended to handle the
distributed data base model considered in [3,4].
We first review the Menasce-Muntz DDB model
(section 6.2) and point out the differences
between the DDB model and the basic model in
section 6.3. An abstraction of the DDB model,
based on coloured graphs is found in section 6.4.
Probe computations for the DDB model are
introduced in section 6.5. The algorithm to solve
the DDB deadlock problem is presented in section
6.6, and a performance issue specific to DDBs is
discussed in section 6.7.

6.2. An Introduction to the DDB Deadlock Problem

A DDB is implemented by N computers SI,..,S N.
There is a local operating system or controller Cj
at each computer S~ to schedule processes, manage
resources and carry out communications. There are
M transactions TI,..,T M running on the DDB. A
t r a ~ -is implemented by a collection of
processes with at most one process per computer.
Each process is labeled with a tuple (Ti,S~) where
T i is the identity of the transaction t~at the
process belongs to and Sj is the computer on which
the process runs. The tuple (Ti,S j) uniquely
identifies a process.

A controller C~ sends a message to a process
(Ti,S j) by puttin~ the message in the process's
memory area and scheduling the process. A process
(Ti,S j) sends a message to its controller Cj by
putting the message in the controller's memory
area and then returning control to the controller.
A process (Ti,S j) communicates directly only with
its own controller Cj. Controllers may send
messages to one anoth@r. Messages sent by any
controller C.I to any controller C m will be
received by C m in finite time and in the order
sent by Cj.

At some stage in a transaction's computation it
may need to "lock" resources (such as files).
There are different kinds of locks (read locks and
write locks for instance) but the details
regarding locks and locking protocols are not
relevant to the problem described here; the reader

is referred to [3,6]. When a process (Ti,S~)
needs a resource it sends a request to i~s

161

controller C~. If Cj manages the resource it may
accede to th~ process's request immediately or the
process may have to wait to acquire the requested
resource. If the requested resource is managed by
some other controller C , then C. transmits the m J
request on to process (Ti,S m) via controller Cm;
the request is now made locally by process (Ti,S m)
to its own controller C m. When (Ti,S m) acquires
the requested resource from C~, it sends a message
to (Ti,S j) (via C m and C~ stating that the

J
requested resource has been acqulred. (Ti,S j) may
now proceed with its computation. When processes
in a transaction T i no longer need a resource
managed by controller Cm, they communicate with
process (Ti,S m) who is responsible for releasing
the resource to C m.

A process cannot proceed with its computation
unless it acquires every resource that it
requests. Thus a process is blocked permanently
from proceeding with computation if it never
acquires a requested resource. We assume that if
a single transaction runs by itself in the DDB it
will terminate in finite time and eventually
release all resources. When two or more
transactions run in parallel, deadock may arise
because each transaction may be blocked needing
resources held by other transactions. The problem
is to construct an algorithm to detect deadlock.

6.3. Difference Between the DDB and Basic Model

In the basic model, one process directly
requests another to carry out some action. In the
DDB model, a process may not be aware of other
processes; furthermore, a process only
communicates directly with its controller. Hence,
the primary difference between the basic model and
the DDB model is that in the basic model a process
determines locally which processes to (request
actions from and) wait for, whereas in the DDB
model the controller at each computer determines
the process waiting behavior at that computer.

6.4. A Graph Model of DDB Deadlock

As in the basic model there is a one-to-one
correspondence between processes in the system and

vertices in the wait-for graph G. There is an edge
in G from a process (T i,S~) to another process

J
(Tk,S~) at the same computer S.., if controller C;

J - - j J
has a reques t from (T i ,S~) f o r resources held by

J
(Tk,S.)j . Such an edge in G (which is incident on
vertices corresponding to processes at a single
controIler) is called an intra-controller edge.
There is an edge in G from a process (Ti,S j) to
another process (T i ,S m) within the same
transaction T i (but at a different computer) if
(Ti,S j) is waiting for a message that it has
acquired a resource managed by Cm; such an edge is
called an inter-controller edge.

The colour of an inter-controller edge from
(Ti,S.) to (T.,S) is grey, black or white, where J. i m
the OOlOUrS have the same meaning as in the basic
model, i.e. it is grey, if (T~,S~) has requested a

± j
resource managed by C m and C m has not received the
request yet; it turns black when C m receives the

request and white when C m gives the requested
resource to (Ti,S m) (at which point it sends a
message to (Ti,S i) saying that the resource has
been acquired). ~ince the existence of an intra-
controller edge ((T~,S~),(T~,S~)) depends only
upon controller C~s Jawar~ne~s that (Ti,S~)
requires a resource ~eld by (Tk,S) and since ~

J '
schedules (Ti,S j) and (Tk,S ~) we may assume tha~
all intra-contrSller edges ~re black. The formal
graph model is described by the following axioms.

Graph Axioms GI-G6 for a DDB

Axioms regarding intra-controller edges

GI: A black intra-controller edge
((Ti,Si),(Tk,Si)) may be added to
G if none exists.

G2: A black intra-controller edge
((T. S.),(T-,S.)) may be deleted

' J ~as J i f (Tk,S~)j no outgoing edges.

Axioms regarding _inter-controller edge s
(analogous to the basic model)

G3: A grey inter-controller edge

((Ti,S.),(Ti,Sm)) may be added to
G if t~e edge does not exist.

G4: A grey inter-controller edge will
turn black in an arbitrary, finite
time.

G5: A black inter-controller edge
((T.,S.),(T.,S)) can turn white
• ~ 0 i m
if (Ti,S m) has no outgoing edges.

G6: A white inter-controller edge will
disappear in arbitrary, finite
time.

A dark cycle in G will persist forever. The
problem is to construct a distributed algorithm by
which a controller C~ can determine if one of its

J
processes (T~,S4) is on a dark cycle. The

J
algorithm must satisfy the following process
axioms which are analogous to the process axioms
for the basic model.

PI: If a probe is sent by Cito C m when edge
((T~,Sj),(Ti,Sm)) is grey, then the edge will turn
black Nome time after the probe is sent and before
it is received. If a probe from C~ is received by
C m when the edge is black then t~e edge existed
and was dark from the instant that the probe was
sent to the instant that the probe was received.

P2: If a probe is sent by C m to C: when edge
((T~,Sj),(Ti,Sm)) is white, then the J edge will

disappear some time after this probe is sent and
before it is received.

162

P3: A controller Cj can determine locally if
there is an outgoing edge from any of its
processes (Ti,S j) to any other process; however,
it cannot determine locally the colour of inter-
controller edges outgoing from (Ti,S.). A
controller C m can determine locally if there is an
incoming black edge to any of its processes
(Ti,Sm).

P4: A probe sent along any edge is received
correctly and within finite time.

6.5. The Probe Computation in the DDB Model

A probe computation in a DDB model is exactly
the same as in the basic model except that instead
of processes, controllers send probes to one
another. Instead of having a process (Ti,S~) send
a probe to another process (Tk,S j) at th~ same
computer S., controller C. merely labels (T k S.)

3 J -- - '
as having received a meanzngful probe. As in t~e
basic model, the n-th probe computation initiated
by controller Cj is tagged (j,n), i.e. all labels
and probes are tagged (j,n). If there is an
outgoing inter-controller edge ((Ti,Sj),(Ti,Sm))
from a labeled process (T i,S.),j then C~ sends a
probe to C m. This probe carries with i~ the tag
(j,n) as well as the identity of the edge
((T~, S~),(T~,S~)); this probe is said to be sent
along e~ge ~(T~,Si),(Ti,Sm)). This probe, fro-----m
controller C: to another controller Cm, is said to
be meaningful if the edge ((Ti,Si),(Ti,Sm)) exists
and is black at the time at whic~h C m receives the
probe. We now describe a single probe
computation, say the (j,n)th. Though the tag
(j,n) does not appear explicitly in the
description, it should be assumed.

6.6. Algorithm for a Probe Computation

Algorithm initiated by C A to determine if
~roee@s (Ti,S j) .is on a dark cycle

AO:

AI:

Label all processes (Tk,S:),
reachable from process (Ti,S])
along intra-controller edges. ~f
(Ti,S~) is labelled, then declare
that ait is on a black cycle of
intra-controller edges.
Otherwise, if there is an inter-
controller edge from a labelled
process (Ta,S j) to any process
(Ta,S b) then send a probe to C b
along edge ((Ta,Sj),(Ta,Sb)).

Upon receiving a meaningful probe
along any inter-controller edge
((Tp,Sm),(Tp,Sj)), label (Tp,Sj)
and all processes reachable from
(T ,S.) along intra-controller
ed~es~ If (Ti,S=)~ is labelled,
declare that (Ti,S])J is on a black
cycle.

Algorith m for a Controller C m Other Than the
Initiator

A2: Upon receiving a meaningful probe
along an inter-controller edge
directed towards a process (Ti,S m)
label (Ti,S_) and all processes
reachable ~rom (Ti,S m) along
intra-controller edges. If there
is an inter-controller edge from a
labelled process (Ta,S m) to any
process (Ta,S b) then send a probe
to C b along edge ((Ta,Sm),(T~,Sb))
if such a probe has not a~ready
been sent.

Note: Each step A0,AI,A2 of the algorithm,
once started, must be completed before the
controller can send or receive other messages.
Hence the intra-controller edges and outgoing
inter-controller edges from processes in S.I cannot
change during steps AO and AI. The a~alogous
condition holds for S m in step A2.

The proof of the algorithm for the DDB model is.
exactly the same as for the basic model. The
performance issues discussed for the basic model
also apply to the DDB model. However, there is
one performance issue which arises in the DDB
model which does not arise in the basic model.
The algorithm presented a b o v e requires a
controller Cj to initiate a separate probe
computation for each of its constituent processes

(Ti,S~). We now show how the number of probe
computations can be reduced.

6.7. How to Avoid Ini.tiatin ~ a Separate Probe
Computation for Each Process

When a controller C: wishes to determine if any
of its constituent pro~esses are on dark cycles it
first determines if there is a cycle along intra-
controller edges alone. If there is no intra-
controller cycle, then any cycle through any
constituent process (Ti,S j) must include an inter-
controller edge directed towards a constituent
process (Tk,S~). Hence, it is sufficient for a

J
controller to initiate separate probe computations
for processes with incoming (black) inter-
controller edges. Hence, when a controller wishes
to determine if any of its processes are
deadlocked it initiates Q separate probe
computations where Q is the number of constituent
processes with incoming, black, inter-controller
edges.

7. SUMMARY

We have presented a solution to the much-
studied problem of deadlock detection in
distributed data base systems. A formal model
based on coloured graphs was used. For purposes
of exposition, the problem was introduced in two
stages: in the first stage, a simple model,
called the basic model was intnoduced and in the
second stage the Menasce-Muntz distributed data

163

base model was discussed. Our algorithm was
proved correct. Details regarding the different
modes of resource locking and other features of
distributed data bases have not been included
here. The reader is referred to [3,6].

A great deal of work remains to be done on
evaluating the performance of the algorithm and on
developing algorithms for different types of
distributed systems.

8. Mohan, C., "Distributed Data Base
Management - Progress, Problems, Some
Proposals and Future Directions,,,
Computer Sciences Department, Workirlg
Paper WP-7802, University of Texas,
Austin, Texas 78712, May 1979.

8. ACKNOWLEDGEMENT

Our work in this general area resulted from
reading a seminal paper by Dijkstra and Scholten
on termination detection [2] and by later

discussions with them. Virgil Gligor showed us
that the DDB problem, though apparently simple,
was non-trivial and interesting, and led us to the
sizable body of work on the subject.

9. REFERENCES

I. Chandy, K, M., J. Misra and L. Haas, "A
Distributed Deadlock Detection
Algorithm and Its Correctness Proof,"
submitted to the Communications of the
ACM.

2. Dijkstra, E. W. D. and C. S. Scholten,
"Termination Detection for Diffusing
Computations," Information Processing
Letters, 11, I, August 1980, pp I-4.

3. Menasce, Daniel and Richard Muntz,
"Locking and Deadlock Detection in
Distributed Data Bases," IEEE
Transactions on Software Engineering,
Vol. SE-5, No. 3, flay 1979.

4. Gligor, Virgil and Susan H. Shattuck,
"On Deadlock Detection in Distributed
Systems," IEEE Transactions on Software
Engineering, Vol. SE-6, No. 5,
September 1980.

5. Yu, Yao-Tin and Mohamed Gouda,
"Deadlock Detection for a Class of
Communicating Finite State Machines,"
TR-193, Computer Sciences Depatment,
University of Texas, Austin, Texas
78712.

6. Gray, J.N., "Notes on Data Base
Operating Systems," in Operating
Systems and Advanced Course, Berlin,
Heidelberg: Springer-Verlag, 1978, Ch.
3.F, pp. 394-481.

7. Obermarck, Ron, "Global Deadlock
Detection Algorithm," RJ2845, IBM
Research Laboratory, San Jose,
California 95193, June 1980.

164

