
Wireless Sensor Networks

CMPSCI 677, 5/10/07

Peter Desnoyers

Wireless Sensor Networks

This lecture will answer:

• What are building blocks of a WSN?

• What is a WSN used for?

Structure:

• Hardware platforms (“motes”)

• Sensing applications

• Canonical problems

• Examples

• Operating systems

WSN Platforms

What are the differences between WSN platforms and

typical computers?

• Battery power
– Goal: maximum system lifetime with no recharge/replacement

• Low-power radios for communication
– 10-200kbit/sec

• Small CPUs
– E.g. 8bit, 4k RAM.

• Flash storage

• Sensors

Battery Power

Example: Mica2 “mote”

• Total battery capacity: 2500mAH (2 AA cells)

• System consumption: 25 mA (CPU and radio on)

• Lifetime: 100 hours (4 days)

Alternatives:

• Bigger batteries

• Solar/wind/… (“energy harvesting”)

• Duty cycling

Low Power Radios

• ISM band – 430, 900, or 2400 MHz

• Varying modulation and protocol:
– Custom (FSK?) – Mica2, 20 kbit/s

– Bluetooth

– Zigbee (802.15.4) - ~200kbit/sec

• Short range
– Typically <100 meters

• Low power. E.g. Chipcon CC2420:
– 9-17 mA transmit (depending on output level)

– 19 mA receive

• Listening can take more energy than transmitting

Small CPUs

• Example: Atmel AVR
– 8 bit

– 4 KB RAM

– 128 KB code flash

– ~2 MIPS @ 8MHz

– ~8 mA

• Example: TI MSP430
– 16 bit (sort of)

– 10 KB RAM

– 48 KB code flash

– 2 mA

Higher-powered processors:

ARM7 (Yale XYZ platform)

 32 bit, 50 MHz, >>1MB RAM

ARM9 (StarGate, others)

 32 bit, 400 MHz, >>16MB RAM

Flash Storage

Raw flash

• Small (serial NOR), very low power

(NAND)

• Page-at-a-time write

• No overwrite without erasing

• Divided into pages and erase blocks

• Typical values: 512B pages,

32 pages in erase block

• Garbage collection needed to gather

free pages for erasing

“Cooked” flash

• Disk-like interface

• 512B re-writable blocks

• Very convenient

• Higher power consumption

NANDNAND

flashSerial NOR

flash

Removable

flash media

Sensors

• Temperature

• Humidity

• Magnetometer

• Vibration

• Acoustic

• Light

• Motion (e.g. passive IR)

• Imaging (cameras)

• Ultrasonic ranging

• GPS

• Lots of others…

Sensor Applications

Base-Remote Link

Data Service

Internet

Client Data Browsing

and Processing

Basestation

Gateway

Sensor Patch

Patch

Network

Sensor Node

Transit Network

• Data driven
– Distributed computation, not

communication network

• Homogeneous
– All sensors typically participate in

the same application(s)

• Typical architecture: data

collection, fusion, and

transport

Canonical WSN Problems

• Localization

• Time Synchronization

• Routing

• Duty cycled networking

• Data aggregation

Localization

Determining relative or absolute

location of a sensor

Solutions:

• GPS

• Ranging and triangulation

– Radio strength (RSSI)

– RF time-of-flight

(interferometry)

– Acoustic time-of-flight

• Directional triangulation

– Acoustic – phase

measurement

Base Station 1

Base Station 3

Base Station 2

u

Problems in Localization

• GPS is expensive, sometimes

difficult to use, and power-

hungry

– Requires line-of-sight to 3 or 4

satellites overhead

– 80mA for 1-5 minutes to

acquire fix

• Radio ranging is not accurate

• Acoustic ranging is limited

– Range

– Applications

• Sensitivity to errors

– Robust triangulation is hard

Distance

R
S

S
I

Path loss

Shadowing

Fading

Time Synchronization

• Applications:

• Event detection by arrival time
– E.g. gunshot triangulation

• Duty cycling synchronization

• External reference
– GPS, WWV

• Autonomous synchronization
– Receiver-receiver

– Sender-receiver

– Drift estimation

Autonomous Synchronization

Idea:
– Sample time at A

– Transmit to B

Issues:
– B receives T_A at T_A+!

– Software delays (T_tx, T_rx)

– Channel acquisition (T_mac)

– Propagation delay (T_prop)

Clock drift
– Quartz crystal:

50 ppm = 50µS/s = 180ms/hr

– Varies with e.g. temperature

T_A

T_tx

T_mac

T_prop

T_rx

T_A+T_os+T_mac

+T_prop+T_rx
A B

Synchronization methods

• Receiver-receiver
– Eliminate transmit uncertainty

• Sender-receiver
– Reduce transmit uncertainty

• Drift estimation
– Estimate and correct

X

A

B

T_A = T_B ± T_rx

Time

stamp

Network

stack

App

Time

stamp

Network

stack

App

T_A

T_A,

T_B

T_B = T_A+T_prop

Routing

• What addresses make sense in a sensor network?
– Location

– Data

• Geographic routing
– GPSR

– Beacon routing

• Flooding, tree construction
– Data collection architectures

GPSR – forward to node

physically closest to

destination

More Routing

• How to handle duty

cycling?
– Sleep or go around?

• Wireless vs. wired

Sleeping

C = 1

C = "

More Routing

• Network lifetime
– More packets = more

battery drain

1 packet/s

4 packet/s

Data

sink

Duty Cycled Networking

Problem: continuous listening is too expensive

Solution: listen periodically
listen

Rx

Tx

preamble data

Low-power

listening

Rx

Tx

preamble data

Synchronized

low-power

listening

Example - Directed Diffusion

• Name data (not nodes), use

physicality

• Sensors publish event notifications

and users subscribe to specific

types.

• optimize path with gradient-based

feedback

• Opportunistic in-network

aggregation and nested queries.

 Event
Source 1

Sensor sink

Directed

Diffusion

A sensor field

Source 2

Directed Diffusion

• Expressing an Interest
– Using attribute-value pairs

– E.g.,

• Uses publish/subscribe
– Inquirer expresses an interest, I, using attribute values

– Sensor sources that can service I, reply with data

Type = Wheeled vehicle // detect vehicle location

Interval = 20 ms // send events every 20ms

Duration = 10 s // Send for next 10 s

Field = [x1, y1, x2, y2] // from sensors in this area

Gradient-based Routing
• Inquirer (sink) broadcasts exploratory

interest, i1
– Intended to discover routes between source

and sink

• Neighbors update interest-cache and
forwards i1

• Gradient for i1 set up to upstream neighbor
– No source routes

– Gradient – a weighted reverse link

– Low gradient ! Few packets per unit time
needed

Low

Event

Low

Low

Exploratory Request

Gradient

Bidirectional gradients established

 on all links through flooding

Examples - TinyDB

TinySQL:

SELECT <aggregates>, <attributes>

[FROM {sensors | <buffer>}]

[WHERE <predicates>]

[GROUP BY <exprs>]

[SAMPLE PERIOD <const> | ONCE]

[INTO <buffer>]

[TRIGGER ACTION <command>]

Data Model

• Entire sensor network as one single, infinitely-long

logical table: sensors

• Columns consist of all the attributes defined in the

network

• Typical attributes:
– Sensor readings

– Meta-data: node id, location, etc.

– Internal states: routing tree parent, timestamp, queue length, etc.

• Nodes return NULL for unknown attributes

• On server, all attributes are defined in catalog.xml

Acquisitional Query Processing

• What’s really new & different about databases on (mote-based)

sensor networks?

• This paper’s answer:

– Long running queries on physically embedded devices that control

when and where and with what frequency data is collected

– Versus traditional DBMS where data is provided a priori

• For a distributed, embedded sensing environment, ACQP provides a

framework for addressing issues of

• When, where, and how often data is sensed/sampled

• Which data is delivered

PRESTO: Model-driven Push

Insight:

• Models are expensive to

create, but simple to check

• Data which can be predicted

does not need to be reported.

Push if sensor
value exceeds or is
less than predicted
value by !

PRESTO Proxy

Data
Cache

Modeling &

Prediction

Model Check

PRESTO Sensor

Data Archive
Sensor Data

Data Management

• Skip this one…

Operating Systems

What features does an operating system need?

YesYesYesEvent scheduling / timers

YesYesYesIPC

YesYesYesNetworking support

Sort ofNoYesProcesses / threads

YesNoYesResource allocation (e.g. memory)

NoNoYesFile system

YesNoYesLoadable programs

YesYesYesHardware drivers, system init

SOSTinyOSUnix

TinyOS & nesC Concepts

• New Language: nesC. Basic unit of code = Component

• Component

– Process Commands

– Throws Events

– Has a Frame for storing local state

– Uses Tasks for concurrency

• Components provide interfaces
– Used by other components to communicate with this component

• Components are wired to each other in a configuration to

connect them

(used for
split-phase)

Application = Graph of Components

RFM

Radio byte

Radio Packet

UART

Serial Packet

ADC

Temp photo

Active Messages

clocks

Route map router sensor appln

A
p

p
li
c
a
ti

o
n

HW

SW

T
h

e
 O

S

TinyOS Code Structure

post A()

Y.multiRead()

(A runs sometime)

Return OK

Flash. read()

Flash. readDone()

If (bytes remain)
post A()

Else
signal Y.multiReadDone()

Y.multiReadDone()

SOS
• Micro-kernel architecture

– User-space, kernel-space separation

– Supports dynamic, run-time addition of modules

– Memory protection possible between module & kernel space

• Each application has one or more modules
– Within a module, interaction uses regular function calls

– Modules interact by passing messages

– Modules can retain state, allocate / deallocate memory

Module 1 Module 2

Micro-kernel

Module-space

Kernel-space

Modules: SOS vs TinyOS

static mod_header_t mod_header
 SOS_MODULE_HEADER =

{
 .mod_id = DFLT_APP_ID0,
 .state_size = sizeof(app_state_t),
 .num_timers = 0,
 .num_sub_func = 0,
 .num_prov_func = 0,
 .platform_type = HW_TYPE ,
 .processor_type = MCU_TYPE,
 .code_id = ehtons(DFLT_APP_ID0),
 .module_handler = test_msg_handler,

};

module Provider
{
 provides interface StdControl;
 provides interface X;
 uses interface Z;
}
implementation
{
 // C code
 ….
}

TinyOS – compile-time SOS – run-time

SOS - Proto-threads

• Threading implemented as macros

#include "pt.h"
struct pt pt;

PT_THREAD(example(struct pt *pt))
{
 PT_BEGIN(pt);
 while(1)
 {
 if(initiate_io())
 {
 timer_start(&timer);
 PT_WAIT_UNTIL(pt, io_completed() || timer_expired(&timer));
 read_data();
 }
 }
 PT_END(pt);
}

Wrap-up

• What did we talk about?

• Energy management
– Esp. duty-cycled radios

• Routing
– By naming and finding information or locations

• In-network processing
– Aggregation (tinyDB)

– Model checking (PRESTO)

• Light weight operating systems

