
CS677: Distributed OSComputer Science Lecture 21, page 1

Today: Coda, xFS

• Case study: NFS (continued)

• Case Study: Coda File System

• Brief overview of other recent file systems

– xFS

– Log structured file systems

CS677: Distributed OSComputer Science Lecture 21, page 2

Client Caching: Delegation

• NFS V4 supports open delegation

– Server delegates local open and close requests to the NFS client

– Uses a callback mechanism to recall file delegation.

CS677: Distributed OSComputer Science Lecture 21, page 3

RPC Failures

• Three situations for handling retransmissions: use a duplicate request cache

a) The request is still in progress

b) The reply has just been returned

c) The reply has been some time ago, but was lost.

 Use a duplicate-request cache: transaction Ids on RPCs, results cached

CS677: Distributed OSComputer Science Lecture 21, page 4

Security

• The NFS security architecture.

– Simplest case: user ID, group ID authentication only

CS677: Distributed OSComputer Science Lecture 21, page 5

Secure RPCs

• Secure RPC in NFS version 4.

CS677: Distributed OSComputer Science Lecture 21, page 6

Replica Servers

• NFS ver 4 supports replications

• Entire file systems must be replicated

• FS_LOCATION attribute for each file

• Replicated servers: implementation specific

CS677: Distributed OSComputer Science Lecture 21, page 7

CODA: File Identifiers

• Each file in Coda belongs to exactly one volume

– Volume may be replicated across several servers

– Multiple logical (replicated) volumes map to the same physical volume

– 96 bit file identifier = 32 bit RVID + 64 bit file handle

CS677: Distributed OSComputer Science Lecture 21, page 8

Sharing Files in Coda

• Transactional behavior for sharing files: similar to share reservations in NFS

– File open: transfer entire file to client machine [similar to delegation]

– Uses session semantics: each session is like a transaction

• Updates are sent back to the server only when the file is closed

CS677: Distributed OSComputer Science Lecture 21, page 9

Transactional Semantics

• Network partition: part of network isolated from rest

– Allow conflicting operations on replicas across file partitions

– Reconcile upon reconnection

– Transactional semantics => operations must be serializable

• Ensure that operations were serializable after thay have executed

– Conflict => force manual reconciliation

YesYesFile contents

YesYesFile length

YesYesLast modification time

NoYesAccess rights

NoYesFile identifier

Modified?Read?File-associated data

CS677: Distributed OSComputer Science Lecture 21, page 10

Client Caching

• Cache consistency maintained using callbacks

– Server tracks all clients that have a copy of the file [provide callback promise]

– Upon modification: send invalidate to clients

CS677: Distributed OSComputer Science Lecture 21, page 11

Server Replication

• Use replicated writes: read-once write-all

– Writes are sent to all AVSG (all accessible replicas)

• How to handle network partitions?

– Use optimistic strategy for replication

– Detect conflicts using a Coda version vector

– Example: [2,2,1] and [1,1,2] is a conflict => manual reconciliation

CS677: Distributed OSComputer Science Lecture 21, page 12

Disconnected Operation

• The state-transition diagram of a Coda client with respect to a volume.

• Use hoarding to provide file access during disconnection

– Prefetch all files that may be accessed and cache (hoard) locally

– If AVSG=0, go to emulation mode and reintegrate upon reconnection

CS677: Distributed OSComputer Science Lecture 21, page 13

Overview of xFS.

• Key Idea: fully distributed file system [serverless file system]

• xFS: x in “xFS” => no server

• Designed for high-speed LAN environments

CS677: Distributed OSComputer Science Lecture 21, page 14

Processes in xFS

• The principle of log-based striping in xFS

– Combines striping and logging

CS677: Distributed OSComputer Science Lecture 21, page 15

Reading a File Block

• Reading a block of data in xFS.

CS677: Distributed OSComputer Science Lecture 21, page 16

xFS Naming

• Main data structures used in xFS.

Maps stripe group ID to list of storage serversStripe group map

Triplet of stripe group, ID, segment ID, and segment offsetLog addresses

Maps a file name to a file identifierFile directory

Reference used to index into manager mapFile identifier

Maps block number (i.e., offset) to log address of blockInode

Maps file ID to log address of file's inodeImap

Maps file ID to managerManager map

DescriptionData structure

