
CS677: Distributed OSComputer Science Lecture 16, page 1

Today: Fault Tolerance

• Failure models

• Agreement in presence of faults

– Two army problem

– Byzantine generals problem

• Reliable communication

• Distributed commit

– Two phase commit

– Three phase commit

• Failure recovery

– Checkpointing

– Message logging

CS677: Distributed OSComputer Science Lecture 16, page 2

Replica Management

• Replica server placement

– Web: geophically skewed request patterns

– Where to place a proxy?

• K-clusters algorithm

• Permanent replicas versus temporary

– Mirroring: all replicas mirror the same content

– Proxy server: on demand replication

• Server-initiated versus client-initiated

CS677: Distributed OSComputer Science Lecture 16, page 3

Content Distribution

• Will come back to this in Chap 12

• CDN: network of proxy servers

• Caching:

– update versus invalidate

– Push versus pull-based approaches

– Stateful versus stateless

• Web caching: what semantics to provide?

CS677: Distributed OSComputer Science Lecture 16, page 4

Final Thoughts

• Replication and caching improve performance in

distributed systems

• Consistency of replicated data is crucial

• Many consistency semantics (models) possible

– Need to pick appropriate model depending on the application

– Example: web caching: weak consistency is OK since humans

are tolerant to stale information (can reload browser)

– Implementation overheads and complexity grows if stronger

guarantees are desired

CS677: Distributed OSComputer Science Lecture 16, page 5

Fault Tolerance

• Single machine systems

– Failures are all or nothing

• OS crash, disk failures

• Distributed systems: multiple independent nodes

– Partial failures are also possible (some nodes fail)

• Question: Can we automatically recover from partial

failures?

– Important issue since probability of failure grows with number

of independent components (nodes) in the systems

– Prob(failure) = Prob(Any one component fails)=1-P(no failure)

CS677: Distributed OSComputer Science Lecture 16, page 6

A Perspective

• Computing systems are not very reliable

– OS crashes frequently (Windows), buggy software, unreliable hardware,
software/hardware incompatibilities

– Until recently: computer users were “tech savvy”

• Could depend on users to reboot, troubleshoot problems

– Growing popularity of Internet/World Wide Web

• “Novice” users

• Need to build more reliable/dependable systems

– Example: what is your TV (or car) broke down every day?

• Users don’t want to “restart” TV or fix it (by opening it up)

• Need to make computing systems more reliable

CS677: Distributed OSComputer Science Lecture 16, page 7

Basic Concepts

• Need to build dependable systems

• Requirements for dependable systems

– Availability: system should be available for use at any given

time

• 99.999 % availability (five 9s) => very small down times

– Reliability: system should run continuously without failure

– Safety: temporary failures should not result in a catastrophic

• Example: computing systems controlling an airplane,

nuclear reactor

– Maintainability: a failed system should be easy to repair

CS677: Distributed OSComputer Science Lecture 16, page 8

Basic Concepts (contd)

• Fault tolerance: system should provide services despite

faults

– Transient faults

– Intermittent faults

– Permanent faults

CS677: Distributed OSComputer Science Lecture 16, page 9

Failure Models

• Different types of failures.

A server may produce arbitrary responses at arbitrary timesArbitrary failure

The server's response is incorrect

The value of the response is wrong

The server deviates from the correct flow of control

Response failure

 Value failure

 State transition failure

A server's response lies outside the specified time intervalTiming failure

A server fails to respond to incoming requests

A server fails to receive incoming messages

A server fails to send messages

Omission failure

 Receive omission

 Send omission

A server halts, but is working correctly until it haltsCrash failure

DescriptionType of failure

CS677: Distributed OSComputer Science Lecture 16, page 10

Failure Masking by Redundancy

• Triple modular redundancy.

CS677: Distributed OSComputer Science Lecture 16, page 11

Agreement in Faulty Systems

• How should processes agree on results of a computation?

• K-fault tolerant: system can survive k faults and yet

function

• Assume processes fail silently

– Need (k+1) redundancy to tolerant k faults

• Byzantine failures: processes run even if sick

– Produce erroneous, random or malicious replies

• Byzantine failures are most difficult to deal with

– Need ? Redundancy to handle Byzantine faults

CS677: Distributed OSComputer Science Lecture 16, page 12

Byzantine Faults

• Simplified scenario: two perfect processes with unreliable channel

– Need to reach agreement on a 1 bit message

• Two army problem: Two armies waiting to attack

– Each army coordinates with a messenger

– Messenger can be captured by the hostile army

– Can generals reach agreement?

– Property: Two perfect process can never reach agreement in presence of unreliable

channel

• Byzantine generals problem: Can N generals reach agreement with a perfect

channel?

– M generals out of N may be traitors

CS677: Distributed OSComputer Science Lecture 16, page 13

Byzantine Generals Problem

• Recursive algorithm by Lamport

• The Byzantine generals problem for 3 loyal generals and 1 traitor.

a) The generals announce their troop strengths (in units of 1 kilosoldiers).

b) The vectors that each general assembles based on (a)

c) The vectors that each general receives in step 3.

CS677: Distributed OSComputer Science Lecture 16, page 14

Byzantine Generals Problem Example

• The same as in previous slide, except now with 2 loyal generals and one traitor.

• Property: With m faulty processes, agreement is possible only if 2m+1 processes function

correctly [Lamport 82]

– Need more than two-thirds processes to function correctly

CS677: Distributed OSComputer Science Lecture 16, page 15

Reaching Agreement

• If message delivery is unbounded,

– No agreeement can be reached even if one process fails

– Slow process indistinguishable from a faulty one

• BAR Fault Tolerance

– Until now: nodes are byzantine or collaborative

– New model: Byzantine, Altruistic and Rational

– Rational nodes: report timeouts etc

CS677: Distributed OSComputer Science Lecture 16, page 16

Reliable One-One Communication
• Issues were discussed in Lecture 3

– Use reliable transport protocols (TCP) or handle at the application layer

• RPC semantics in the presence of failures

• Possibilities
– Client unable to locate server

– Lost request messages

– Server crashes after receiving request

– Lost reply messages

– Client crashes after sending request

CS677: Distributed OSComputer Science Lecture 16, page 17

Reliable One-Many Communication

•Reliable multicast

– Lost messages => need to

retransmit

•Possibilities

– ACK-based schemes

• Sender can become

bottleneck

– NACK-based schemes

CS677: Distributed OSComputer Science Lecture 16, page 18

Atomic Multicast

•Atomic multicast: a guarantee that all

process received the message or none at all

– Replicated database example

•Problem: how to handle process crashes?

•Solution: group view

– Each message is uniquely associated

with a group of processes

• View of the process group when

message was sent

• All processes in the group should

have the same view (and agree on

it)

Virtually Synchronous Multicast

CS677: Distributed OSComputer Science Lecture 16, page 19

Implementing Virtual Synchrony in Isis

a) Process 4 notices that process 7 has crashed, sends a view change

b) Process 6 sends out all its unstable messages, followed by a flush message

c) Process 6 installs the new view when it has received a flush message from everyone

else

CS677: Distributed OSComputer Science Lecture 16, page 20

Distributed Commit

• Atomic multicast example of a more general problem

– All processes in a group perform an operation or not at all

– Examples:

• Reliable multicast: Operation = delivery of a message

• Distributed transaction: Operation = commit transaction

• Problem of distributed commit

– All or nothing operations in a group of processes

• Possible approaches

– Two phase commit (2PC) [Gray 1978]

– Three phase commit

CS677: Distributed OSComputer Science Lecture 16, page 21

Two Phase Commit

•Coordinator process coordinates

the operation

•Involves two phases

– Voting phase: processes vote on

whether to commit

– Decision phase: actually commit

or abort

CS677: Distributed OSComputer Science Lecture 16, page 22

Implementing Two-Phase Commit

• Outline of the steps taken by the coordinator in a
two phase commit protocol

actions by coordinator:

while START _2PC to local log;

multicast VOTE_REQUEST to all participants;

while not all votes have been collected {

 wait for any incoming vote;

 if timeout {

 while GLOBAL_ABORT to local log;

 multicast GLOBAL_ABORT to all participants;

 exit;

 }

 record vote;

}

if all participants sent VOTE_COMMIT and coordinator votes COMMIT{

 write GLOBAL_COMMIT to local log;

 multicast GLOBAL_COMMIT to all participants;

} else {

 write GLOBAL_ABORT to local log;

 multicast GLOBAL_ABORT to all participants;

}

CS677: Distributed OSComputer Science Lecture 16, page 23

Implementing 2PC
actions by participant:

write INIT to local log;

wait for VOTE_REQUEST from coordinator;

if timeout {

 write VOTE_ABORT to local log;

 exit;

}

if participant votes COMMIT {

 write VOTE_COMMIT to local log;

 send VOTE_COMMIT to coordinator;

 wait for DECISION from coordinator;

 if timeout {

 multicast DECISION_REQUEST to other

participants;

 wait until DECISION is received; /* remain blocked */

 write DECISION to local log;

 }

 if DECISION == GLOBAL_COMMIT

 write GLOBAL_COMMIT to local log;

 else if DECISION == GLOBAL_ABORT

 write GLOBAL_ABORT to local log;

} else {

 write VOTE_ABORT to local log;

 send VOTE ABORT to coordinator;

}

actions for handling decision requests:

/*executed by separate thread */

while true {

 wait until any incoming DECISION_REQUEST

is received; /* remain blocked */

 read most recently recorded STATE from the

local log;

 if STATE == GLOBAL_COMMIT

 send GLOBAL_COMMIT to requesting

participant;

 else if STATE == INIT or STATE ==

GLOBAL_ABORT

 send GLOBAL_ABORT to requesting

participant;

 else

 skip; /* participant remains blocked */

CS677: Distributed OSComputer Science Lecture 16, page 24

Three-Phase Commit

Two phase commit: problem if coordinator crashes (processes block)

Three phase commit: variant of 2PC that avoids blocking

CS677: Distributed OSComputer Science Lecture 16, page 25

Recovery

• Techniques thus far allow failure handling

• Recovery: operations that must be performed after a

failure to recover to a correct state

• Techniques:

– Checkpointing:

• Periodically checkpoint state

• Upon a crash roll back to a previous checkpoint with a

consistent state

CS677: Distributed OSComputer Science Lecture 16, page 26

Independent Checkpointing

• Each processes periodically checkpoints independently of other

processes

• Upon a failure, work backwards to locate a consistent cut

• Problem: if most recent checkpoints form inconsistenct cut, will need

to keep rolling back until a consistent cut is found

• Cascading rollbacks can lead to a domino effect.

CS677: Distributed OSComputer Science Lecture 16, page 27

Coordinated Checkpointing

• Take a distributed snapshot [discussed in Lec 11]

• Upon a failure, roll back to the latest snapshot

– All process restart from the latest snapshot

CS677: Distributed OSComputer Science Lecture 16, page 28

Message Logging

• Checkpointing is expensive

– All processes restart from previous consistent cut

– Taking a snapshot is expensive

– Infrequent snapshots => all computations after previous
snapshot will need to be redone [wasteful]

• Combine checkpointing (expensive) with message
logging (cheap)

– Take infrequent checkpoints

– Log all messages between checkpoints to local stable storage

– To recover: simply replay messages from previous checkpoint

• Avoids recomputations from previous checkpoint

