Last Class

* Distributed Snapshots

— Termination detection

* FElection algorithms
— Bully
— Ring

m Computer Science CS677: Distributed OS Lecture 13, page 1
UMASS

Today: Still More Canonical Problems

* Distributed synchronization and mutual exclusion

* Distributed transactions

m Computer Science CS677: Distributed OS Lecture 13, page 2
UMASS

Distributed Synchronization

* Distributed system with multiple processes may need to

share data or access shared data structures

— Use critical sections with mutual exclusion
* Single process with multiple threads

— Semaphores, locks, monitors
* How do you do this for multiple processes in a

distributed system?

— Processes may be running on different machines
* Solution: lock mechanism for a distributed environment

— Can be centralized or distributed

m Computer Science CS677: Distributed OS Lecture 13, page 3
UMASS

Centralized Mutual Exclusion

* Assume processes are numbered
* One process is elected coordinator (highest ID process)

* Every process needs to check with coordinator before
entering the critical section

» To obtain exclusive access: send request, await reply
» To release: send release message

e Coordinator:

— Receive request: if available and queue empty, send grant; if
not, queue request

— Receive release: remove next request from queue and send
grant

m Computer Science CS677: Distributed OS Lecture 13, page 4
UMASS

Mutual Exclusion:
A Centralized Algorithm

OROROEEROIONORENORONE
Request LT OK Request’//ﬁ\lo . Release A‘K
’ ply

s ©
@ Queue is O

] ﬂ empty
Coordinator

(@) (b) (©

a) Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

b) Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when then
replies to 2

m Computer Science CS677: Distributed OS Lecture 13, page 5
UMASS

Properties

* Simulates centralized lock using blocking calls
 Fair: requests are granted the lock in the order they were received

« Simple: three messages per use of a critical section (request, grant,
release)

* Shortcomings:
— Single point of failure
— How do you detect a dead coordinator?

* A process can not distinguish between “lock in use” from a dead
coordinator
— No response from coordinator in either case

— Performance bottleneck in large distributed systems

m Computer Science CS677: Distributed OS Lecture 13, page 6
UMASS

Decentralized Algorithm

Use voting
* Assume n replicas and a coordinator per replica

To acquire lock, need majority vote m > n/2
coordinators
— Non blocking: coordinators returns OK or “no”

Coordinator crash => forgets previous votes
— Probability that k coordinators crash P(k) = ™C, p* (1-p)mk

— Atleast 2m-n need to reset to violate correctness
¢ Z 2m-n nP(k)

m Computer Science CS677: Distributed OS Lecture 13, page 7
UMASS

Distributed Algorithm

[Ricart and Agrawala]: needs 2(n-1) messages

Based on event ordering and time stamps
— Assumes total ordering of events in the system (Lamport’s clock)

Process k enters critical section as follows
— Generate new time stamp 7.5, = T'S,+1

— Send request(k,TS,) all other n-1 processes
— Wait until reply(j) received from all other processes
— Enter critical section
« Upon receiving a request message, process j
— Sends reply if no contention
— If already in critical section, does not reply, queue request

— If wants to enter, compare 75, with 7S, and send reply if 7S, <TS,, else
queue

m Computer Science CS677: Distributed OS Lecture 13, page 8
UMASS

A Distributed Algorithm

Enters
critical
region

¥ — —

0 0 0
8 Nz OK oK OK
8 . Enters

o T

1 2 - 2 @ @ critical
12 OK region
12
@ (b) (©
a) Two processes want to enter the same critical region at the same
moment.
b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter the
critical region.
m Computer Science CS677: Distributed OS Lecture 13, page 9
UMASS

Properties

 Fully decentralized
* N points of failure!

 All processes are involved in all decisions
— Any overloaded process can become a bottleneck

m Computer Science CS677: Distributed OS Lecture 13, page 10
UMASS

A Token Ring Algorithm

N TN TN SN SN SN SN SN SN N

PPPPPPPPPY

@ (b)

a) Anunordered group of processes on a network.
b) A logical ring constructed in software.

« Use a token to arbitrate access to critical section
* Must wait for token before entering CS
* Pass the token to neighbor once done or if not interested

Detecting token loss in non-trivial

m Computer Science CS677: Distributed OS Lecture 13, page 11

Comparison

Algorithm Messagc_es per Delay befo_re entry (in Problems
entry/exit message times)

Centralized 3 2 Coordinator crash

Decentralized 3mk 2m starvation

Distributed 2(n=1) 2(n=1) Crash of any
process

Token ring 1t0 Oton-1 Lost token, process
crash

e A comparison of four mutual exclusion algorithms.

m Computer Science CS677: Distributed OS Lecture 13, page 12
UMASS

Transactions

*Transactions provide higher level
mechanism for atomicity of
processing in distributed systems

— Have their origins in databases

*Banking example: Three

accounts A:$100, B:$200, C:$300
— Client 1: transfer $4 from A to B
— Client 2: transfer $3 from C to B

*Result can be inconsistent unless
certain properties are imposed on
the accesses

m Computer Science
UMASS

Client 1

Client 2

Read A: $100

Write A: $96

Read C: $300

Write C:$297

Read B: $200

Read B: $200

Write B:$203

Write B:$204

CS677: Distributed OS

ACID Properties

*Atomic: all or nothing

*Consistent: transaction takes
system from one consistent state to
another

Isolated: Immediate effects are
not visible to other (serializable)

*Durable: Changes are permanent
once transaction completes
(commits)

m Computer Science
UMASS

Lecture 13, page 13

Client 1

Client 2

Read A: $100

Write A: $96

Read B: $200

Write B:$204

Read C: $300

Write C:$297

Read B: $204

Write B:$207

CS677: Distributed OS

Lecture 13, page 14

Transaction Primitives

Primitive

Description

BEGIN_TRANSACTION

Make the start of a transaction

END_TRANSACTION

Terminate the transaction and try to commit

ABORT_TRANSACTION

Kill the transaction and restore the old values

READ

Read data from a file, a table, or otherwise

WRITE

Write data to a file, a table, or otherwise

Example: airline reservation

Begin_transaction

if(reserve(NY,Paris)==full) Abort_transaction
if(reserve(Paris,Athens)==full)Abort_transaction
if(reserve(Athens,Delhi)==full) Abort_transaction

End_transaction

m Computer Science
UMASS

CS677: Distributed OS Lecture 13, page 15

Distributed Transactions

Nested transaction

| 1 Distributed transaction

ISub’transac’tion ‘ ISu btransaction .

I 1

ISu btransaction | ISubtransaction |

I 1

Airline databa% ﬂotel database

Two different (independent)
databases

@)

m Computer Science

UMASS

Distributed database

Two physically separated
parts of the same database

(b)

CS677: Distributed OS Lecture 13, page 16

Implementation: Private Workspace

Each transaction get copies of all files, objects

Can optimize for reads by not making copies

Can optimize for writes by copying only what is required

Commit requires making local workspace global

Private
workspace

Original

Free blocks
(a) (b) (©

m Computer Science CS677: Distributed OS Lecture 13, page 17
UMASS

Option 2: Write-ahead Logs

* In-place updates: transaction makes changes directly to all files/objects

* Write-ahead log: prior to making change, transaction writes to log on stable
Storage

— Transaction ID, block number, original value, new value
* Force logs on commit
« If abort, read log records and undo changes [rollback]

* Log can be used to rerun transaction after failure

* Both workspaces and logs work for distributed transactions

* Commit needs to be atomic [will return to this issue in Ch. 7]

m Computer Science CS677: Distributed OS Lecture 13, page 18
UMASS

Writeahead Log Example

x=0; Log Log Log
y=0;

BEGIN_TRANSACTION;

X=x+1; [x=0/1] [x=0/1] [x=0/1]
y=y+2 [y = 0/2] [y = 0/2]
X=y*y; [x =1/4]

END_TRANSACTION;
(@) (b) (c) (d)

* a) A transaction
 b)—d) The log before each statement is executed

m Computer Science CS677: Distributed OS Lecture 13, page 19
UMASS

Concurrency Control

* Goal: Allow several transactions to be executing
simultaneously such that

— Collection of manipulated data item is left in a consistent state

* Achieve consistency by ensuring data items are accessed
in an specific order

— Final result should be same as if each transaction ran
sequentially

« Concurrency control can implemented in a /ayered fashion

m Computer Science CS677: Distributed OS Lecture 13, page 20
UMASS

Concurrency Control Implementation

Transactions

\y/

READMWRITE | Transaction | BEGIN_TRANSACTION
manager END_TRANSACTION

v A
LOCK/RELEASE

Scheduler or
Timestamp operations
v A

Data Execute read/write
manager

* General organization of managers for handling transactions.

m Computer Science CS677: Distributed OS Lecture 13, page 21
UMASS

Distributed Concurrency Control

* General organization of
\ i / managers for handling
distributed transactions.

Transaction

manager

h 4 A

SchedulerJ‘ Scheduler Scheduler
A . r‘_\ ¥ A Y /,_/—‘ B
Y xka v &l La v
Data Data Data

manager manager manager
Machine A Machine B Machine C

m Computer Science CS677: Distributed OS Lecture 13, page 22
UMASS

Serializability

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION
x=0; x=0; x=0;
xX=x+1; X=X+ 2; X=x+3;
END_TRANSACTION END_TRANSACTION END_TRANSACTION

(a) (b) (c)
Schedule 1 x=0; x=x+1; x=0; x=x+2; x=0; x=x+3 Legal
Schedule 2 x=0; x=0; x=x+1; x=x+2; x=0; x=x+3; Legal
Schedule 3 x=0; x=0; x=x+1; x=0; x=x+2; x=x+3; lllegal

« Key idea: properly schedule conflicting operations

* Conflict possible if at least one operation is write
— Read-write conflict
— Write-write conflict

m Computer Science CS677: Distributed OS Lecture 13, page 23
UMASS

Optimistic Concurrency Control

« Transaction does what it wants and validates changes prior to
commit

— Check if files/objects have been changed by committed transactions since
they were opened

— Insight: conflicts are rare, so works well most of the time
* Works well with private workspaces
* Advantage:

— Deadlock free

— Maximum parallelism
» Disadvantage:

— Rerun transaction if aborts

— Probability of conflict rises substantially at high loads

Not used widely

? Computer Science CS677: Distributed OS Lecture 13, page 24

Two-phase Locking

Widely used concurrency control technique

Scheduler acquires all necessary locks in growing phase,
releases locks in shrinking phase
— Check if operation on data item x conflicts with existing locks

* If so, delay transaction. If not, grant a lock on x
— Never release a lock until data manager finishes operation on x

— One a lock is released, no further locks can be granted

Problem: deadlock possible

— Example: acquiring two locks in different order
Distributed 2PL versus centralized 2PL

m Computer Science CS677: Distributed OS Lecture 13, page 25
UMASS

Two-Phase Locking

Lock point

Growing phase Shrinking phase

»

Number of locks

* Two-phase locking.

m Computer Science CS677: Distributed OS Lecture 13, page 26
UMASS

Strict Two-Phase Locking

Lock point
) |
[} Growing phase Shrinking phase
3 |« gp > gp >
"'6 |
7 |
g i All locks are released
S 1 at the same time
z | Tl
|
|
|
|
|
|
|
Time —»
* Strict two-phase locking.
m Computer Science CS677: Distributed OS Lecture 13, page 27
UMASS

Timestamp-based Concurrency Control

Each transaction Ti is given timestamp ts(T1)

If Ti wants to do an operation that conflicts with Tj
— Abort Ti if £s(Ti) < ts(Tj)

When a transaction aborts, it must restart with a new
(larger) time stamp

Two values for each data item x
— Max-rts(x): max time stamp of a transaction that read x

— Max-wts(x): max time stamp of a transaction that wrote x

m Computer Science CS677: Distributed OS Lecture 13, page 28
UMASS

Reads and Writes using Timestamps

* Read (x)
— If ts(T,) < max-wts(x) then Abort T,
— Else
* Perform R,(x)
* Max-rts(x) = max(max-rts(x), ts(T))
« Write,(x)
— If ts(T,)<max-rts(x) or ts(T,)<max-wts(x) then Abort T;
— Else
* Perform W,(x)
* Max-wts(x) = ts(T))

m Computer Science CS677: Distributed OS Lecture 13, page 29
UMASS

Pessimistic Timestamp Ordering

tspp®) tspr() ts(h) tsr(X) ts(T2)
@ w @ A [@) oK
(a) Time = te(r)mtative © fme ==
tspr®) tsppX) ts(T) write tSwr(¥) 1S ™) ts(T2)
@ @ w @ @ @ oK
(b) Time —» (f) Time —»
ts(T: 2) tSRD(X) tS(Tz) 1-"S’\/\/R(X)
@ @ (|
() Time —» Abort (@ Time = Abort
ts(Tp) tSyr(X) ts(2) ISient(X)
@ @ @ | @
(d) Time —» (h) Time —»

m Computer Science CS677: Distributed OS Lecture 13, page 30
UMASS

