Last Class

- Distributed Snapshots
 - Termination detection
- Election algorithms
 - Bully
 - Ring

CS677: Distributed OS

Lecture 13, page 1

Today: Still More Canonical Problems

- Distributed synchronization and mutual exclusion
- Distributed transactions

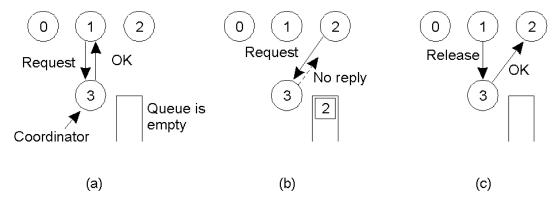
Distributed Synchronization

- Distributed system with multiple processes may need to share data or access shared data structures
 - Use critical sections with mutual exclusion
- Single process with multiple threads
 - Semaphores, locks, monitors
- How do you do this for multiple processes in a distributed system?
 - Processes may be running on different machines
- Solution: lock mechanism for a distributed environment
 - Can be centralized or distributed

CS677: Distributed OS

Lecture 13, page 3

Centralized Mutual Exclusion


- Assume processes are numbered
- One process is elected coordinator (highest ID process)
- Every process needs to check with coordinator before entering the critical section
- To obtain exclusive access: send request, await reply
- To release: send release message
- Coordinator:
 - Receive *request*: if available and queue empty, send grant; if not, queue request
 - Receive *release*: remove next request from queue and send grant

CS677: Distributed OS

Lecture 13, page 4

Mutual Exclusion: A Centralized Algorithm

- a) Process 1 asks the coordinator for permission to enter a critical region. Permission is granted
- b) Process 2 then asks permission to enter the same critical region. The coordinator does not reply.
- c) When process 1 exits the critical region, it tells the coordinator, when then replies to 2

CS677: Distributed OS

Lecture 13, page 5

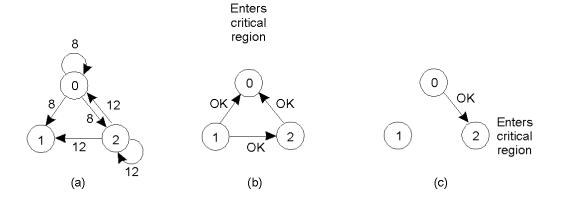
Properties

- Simulates centralized lock using blocking calls
- Fair: requests are granted the lock in the order they were received
- Simple: three messages per use of a critical section (request, grant, release)
- Shortcomings:
 - Single point of failure
 - How do you detect a dead coordinator?
 - A process can not distinguish between "lock in use" from a dead coordinator
 - No response from coordinator in either case
 - Performance bottleneck in large distributed systems

Decentralized Algorithm

- Use voting
- Assume n replicas and a coordinator per replica
- To acquire lock, need majority vote m > n/2 coordinators
 - Non blocking: coordinators returns OK or "no"
- Coordinator crash => forgets previous votes
 - Probability that k coordinators crash $P(k) = {}^{m}C_{k} p^{k} (1-p)^{m-k}$
 - Atleast 2m-n need to reset to violate correctness
 - $\sum_{2m-n} {}^{n}P(k)$

CS677: Distributed OS


Lecture 13, page 7

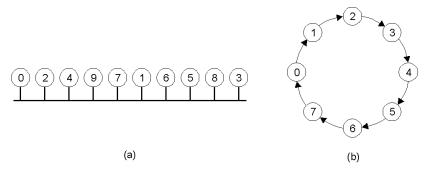
Distributed Algorithm

- [Ricart and Agrawala]: needs 2(n-1) messages
- Based on event ordering and time stamps
 - Assumes total ordering of events in the system (Lamport's clock)
- Process k enters critical section as follows
 - Generate new time stamp $TS_k = TS_k + I$
 - Send $request(k, TS_k)$ all other n-1 processes
 - Wait until reply(j) received from all other processes
 - Enter critical section
- Upon receiving a *request* message, process *j*
 - Sends *reply* if no contention
 - If already in critical section, does not reply, queue request
 - If wants to enter, compare TS_j with TS_k and send reply if $TS_k < TS_j$, else queue

A Distributed Algorithm

- Two processes want to enter the same critical region at the same moment.
- b) Process 0 has the lowest timestamp, so it wins.
- c) When process 0 is done, it sends an OK also, so 2 can now enter the critical region.

CS677: Distributed OS


Lecture 13, page 9

Properties

- Fully decentralized
- N points of failure!
- All processes are involved in all decisions
 - Any overloaded process can become a bottleneck

A Token Ring Algorithm

- a) An unordered group of processes on a network.
- b) A logical ring constructed in software.
- Use a token to arbitrate access to critical section
- Must wait for token before entering CS
- Pass the token to neighbor once done or if not interested
- Detecting token loss in non-trivial

CS677: Distributed OS

Lecture 13, page 11

Comparison

Algorithm	Messages per entry/exit	Delay before entry (in message times)	Problems
Centralized	3	2	Coordinator crash
Decentralized	3mk	2m	starvation
Distributed	2 (n – 1)	2 (n – 1)	Crash of any process
Token ring	1 to ∞	0 to n – 1	Lost token, process crash

A comparison of four mutual exclusion algorithms.

Transactions

- •Transactions provide higher level mechanism for *atomicity* of processing in distributed systems
 - Have their origins in databases
- •Banking example: Three accounts A:\$100, B:\$200, C:\$300
 - Client 1: transfer \$4 from A to BClient 2: transfer \$3 from C to B
- •Result can be inconsistent unless certain properties are imposed on the accesses

Client 1	Client 2
Read A: \$100	
Write A: \$96	
	Read C: \$300
	Write C:\$297
Read B: \$200	
	Read B: \$200
	Write B:\$203
Write B:\$204	

CS677: Distributed OS

Lecture 13, page 13

ACID Properties

- Atomic: all or nothing
- *Consistent*: transaction takes system from one consistent state to another
- *Isolated*: Immediate effects are not visible to other (serializable)
- •Durable: Changes are permanent once transaction completes (commits)

Client 1	Client 2
Read A: \$100	
Write A: \$96	
Read B: \$200	
Write B:\$204	
	Read C: \$300
	Write C:\$297
	Read B: \$204
	Write B:\$207

Transaction Primitives

Primitive	Description
BEGIN_TRANSACTION	Make the start of a transaction
END_TRANSACTION	Terminate the transaction and try to commit
ABORT_TRANSACTION	Kill the transaction and restore the old values
READ	Read data from a file, a table, or otherwise
WRITE	Write data to a file, a table, or otherwise

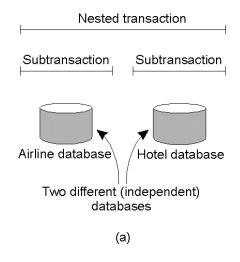
Example: airline reservation

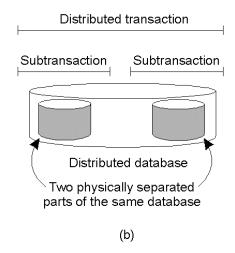
Begin_transaction

if(reserve(NY,Paris)==full) Abort_transaction

if(reserve(Paris, Athens) == full) Abort_transaction

if(reserve(Athens,Delhi)==full) Abort_transaction

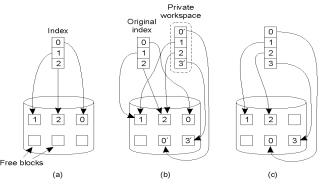

End_transaction



CS677: Distributed OS

Lecture 13, page 15

Distributed Transactions



Implementation: Private Workspace

- Each transaction get copies of all files, objects
- Can optimize for reads by not making copies
- Can optimize for writes by copying only what is required
- Commit requires making local workspace global

CS677: Distributed OS

Lecture 13, page 17

Option 2: Write-ahead Logs

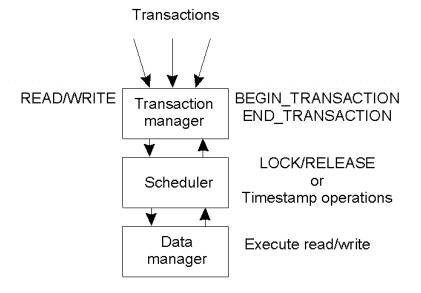
- *In-place updates*: transaction makes changes *directly* to all files/objects
- Write-ahead log: prior to making change, transaction writes to log on stable storage
 - Transaction ID, block number, original value, new value
- Force logs on commit
- If abort, read log records and undo changes [rollback]
- Log can be used to rerun transaction after failure
- Both workspaces and logs work for distributed transactions
- Commit needs to be *atomic* [will return to this issue in Ch. 7]

Writeahead Log Example

x = 0;	Log	Log	Log
y = 0;			
BEGIN_TRANSACTION;			
x = x + 1;	[x = 0 / 1]	[x = 0 / 1]	[x = 0 / 1]
y = y + 2		[y = 0/2]	[y = 0/2]
x = y * y;			[x = 1/4]
END_TRANSACTION;			
(a)	(b)	(c)	(d)

- a) A transaction
- b) d) The log before each statement is executed

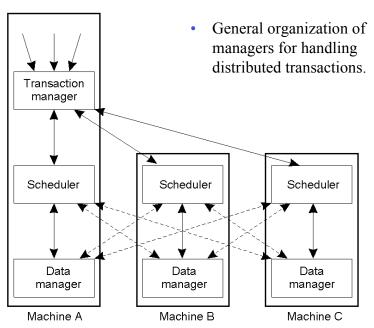
CS677: Distributed OS


Lecture 13, page 19

Concurrency Control

- Goal: Allow several transactions to be executing simultaneously such that
 - Collection of manipulated data item is left in a consistent state
- Achieve consistency by ensuring data items are accessed in an specific order
 - Final result should be same as if each transaction ran sequentially
- Concurrency control can implemented in a *layered* fashion

Concurrency Control Implementation


• General organization of managers for handling transactions.

CS677: Distributed OS

Lecture 13, page 21

Distributed Concurrency Control

Computer Science

CS677: Distributed OS

Lecture 13, page 22

Serializability

Schedule 1	x = 0; $x = x + 1$; $x = 0$; $x = x + 2$; $x = 0$; $x = x + 3$	Legal
Schedule 2	x = 0; $x = 0$; $x = x + 1$; $x = x + 2$; $x = 0$; $x = x + 3$;	Legal
Schedule 3	x = 0; $x = 0$; $x = x + 1$; $x = 0$; $x = x + 2$; $x = x + 3$;	Illegal

- Key idea: properly schedule conflicting operations
- Conflict possible if at least one operation is write
 - Read-write conflict
 - Write-write conflict

CS677: Distributed OS

Lecture 13, page 23

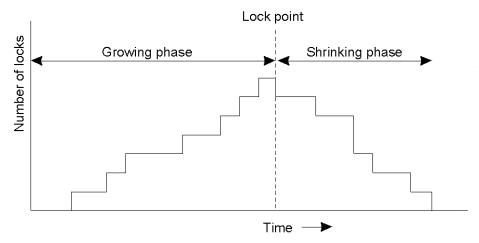
Optimistic Concurrency Control

- Transaction does what it wants and validates changes prior to commit
 - Check if files/objects have been changed by committed transactions since they were opened
 - Insight: conflicts are rare, so works well most of the time
- Works well with private workspaces
- Advantage:
 - Deadlock free
 - Maximum parallelism
- Disadvantage:
 - Rerun transaction if aborts
 - Probability of conflict rises substantially at high loads
- Not used widely

CS677: Distributed OS

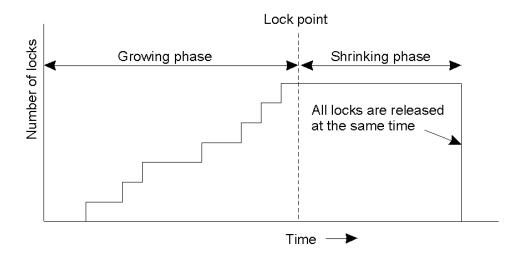
Lecture 13, page 24

Two-phase Locking


- Widely used concurrency control technique
- Scheduler acquires all necessary locks in growing phase, releases locks in shrinking phase
 - Check if operation on *data item x* conflicts with existing locks
 - If so, delay transaction. If not, grant a lock on x
 - Never release a lock until data manager finishes operation on x
 - One a lock is released, no further locks can be granted
- Problem: deadlock possible
 - Example: acquiring two locks in different order
- Distributed 2PL versus centralized 2PL

CS677: Distributed OS

Lecture 13, page 25


Two-Phase Locking

Two-phase locking.

Strict Two-Phase Locking

Strict two-phase locking.

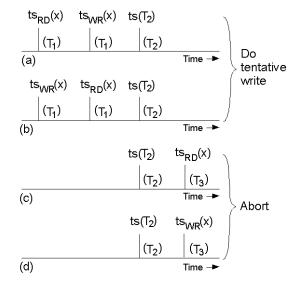
CS677: Distributed OS

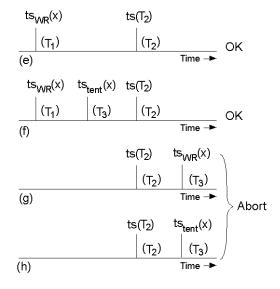
Lecture 13, page 27

Timestamp-based Concurrency Control

- Each transaction Ti is given timestamp ts(Ti)
- If Ti wants to do an operation that conflicts with Tj
 - Abort Ti if ts(Ti) < ts(Tj)
- When a transaction aborts, it must restart with a new (larger) time stamp
- Two values for each data item x
 - Max-rts(x): max time stamp of a transaction that read x
 - Max-wts(x): max time stamp of a transaction that wrote x

Reads and Writes using Timestamps


- $Read_i(x)$
 - If $ts(T_i) \le max\text{-}wts(x)$ then Abort T_i
 - Else
 - Perform $R_i(x)$
 - $Max-rts(x) = max(max-rts(x), ts(T_i))$
- $Write_i(x)$
 - If $ts(T_i) < max-rts(x)$ or $ts(T_i) < max-wts(x)$ then Abort T_i
 - Else
 - Perform $W_i(x)$
 - Max- $wts(x) = ts(T_i)$



CS677: Distributed OS

Lecture 13, page 29

Pessimistic Timestamp Ordering

