Last Class: Clock Synchronization

 Physical clocks

* Clock synchronization algorithms
— Ciristian’s algorithm
— Berkeley algorithm
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Today: More Canonical Problems

» Logical clocks

* Causality
— Vector timestamps

* (Global state and termination detection
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Global Positioning System
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« Computing a position in a two-dimensional space.
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Global Positioning System

» Real world facts that complicate GPS

1.1t takes a while before data on a
satellite’s position reaches the
receiver.

2.The receiver’s clock 1s generally not
in synch with that of a satellite.
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Clock Synchronization in Wireless
Networks
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» Reference broadcast sync (RBS): receivers synchronize with one
another using RB server

— Mutual offset =T, - T;; (can average over multiple readings)
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Network Time Protocol

dTreq dTres
* Widely used standard - based on Cristian’s algo
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Logical Clocks

* For many problems, internal consistency of clocks is
important
— Absolute time is less important
— Use logical clocks
» Key idea:
— Clock synchronization need not be absolute
— If two machines do not interact, no need to synchronize them

— More importantly, processes need to agree on the order in
which events occur rather than the time at which they occurred
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Event Ordering

* Problem: define a total ordering of all events that occur
in a system

* Events in a single processor machine are totally ordered

* In a distributed system:

— No global clock, local clocks may be unsynchronized

— Can not order events on different machines using local times
« Key idea [Lamport ]

— Processes exchange messages

— Message must be sent before received

— Send/receive used to order events (and synchronize clocks)
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Happened Before Relation

* If 4 and B are events in the same process and 4 executed before B,
then 4 -> B

« If A represents sending of a message and B is the receipt of this
message, then A -> B

» Relation is transitive:
-~ A>BandB->C ==A->C
+ Relation is undefined across processes that do not exchange
messages

— Partial ordering on events
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Event Ordering Using HB

* Goal: define the notion of time of an event such that
— If A=> B then C(A) < C(B)
— If A and B are concurrent, then C(A) <, =or > C(B)
* Solution:
— Each processor maintains a logical clock LC,
— Whenever an event occurs locally at I, LC,;= LC;+1
— When 7 sends message to j, piggyback Lc;
— When j receives message from i
* If LC; < LC; then LC,; = LC; +1 else do nothing
— Claim: this algorithm meets the above goals
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Lamport’s Logical Clocks
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Example: Totally-Ordered
Multicasting

% Update 1 e !pﬁ_%t?_%___i

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1
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Causality

» Lamport’s logical clocks
— If 4-> Bthen C(4) < C(B)
— Reverse is not true!!
* Nothing can be said about events by comparing time-stamps!
* If C(4) < C(B), then ??
* Need to maintain causality
— If a->Db then a is casually related to b
— Causal delivery:1f send(m) -> send(n) => deliver(m) -> deliver(n)
— Capture causal relationships between groups of processes
— Need a time-stamping mechanism such that:
* If T(4A) < T(B) then A should have causally preceded B
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Vector Clocks

 Each process i maintains a vector V;
— V.[i] : number of events that have occurred at 1
— V.[j] : number of events I knows have occurred at process ]
» Update vector clocks as follows
— Local event: increment V,[I]
— Send a message :piggyback entire vector V
— Receipt of a message: V/k] = max( V;[k],Vi/k] )
* Receiver is told about how many events the sender knows
occurred at another process k

« Also V[i] = V/[i]+1
« Exercise: prove that if V(4)<V(B), then A causally
precedes B and the other way around.
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Enforcing Causal Communication

VC, = (1,1,0)
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Global State

* Global state of a distributed system
— Local state of each process
— Messages sent but not received (state of the queues)

* Many applications need to know the state of the system
— Failure recovery, distributed deadlock detection
* Problem: how can you figure out the state of a
distributed system?
— Each process is independent
— No global clock or synchronization

 Distributed snapshot: a consistent global state
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Global State (1)

Consistent cut Inconsistent cut
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Distributed Snapshot Algorithm

* Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

* Any process can initiate the algorithm

— Checkpoint local state
— Send marker on every outgoing channel

* On receiving a marker

— Checkpoint state if first marker and send marker on outgoing
channels, save messages on all other channels until:

— Subsequent marker on a channel: stop saving state for that
channel
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Distributed Snapshot

A process finishes when

— It receives a marker on each incoming channel and processes

them all
— State: local state plus state of all channels
. ., . M
— Send state to initiator A / T
» Any process can initiate snapshot T

— Multiple snapshots may be in progress

 Each is separate, and each is distinguished by tagging the
marker with the initiator ID (and sequence number)
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Snapshot Algorithm Example
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a)  Organization of a process and channels for a distributed snapshot
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Snapshot Algorithm Example
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b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message

d) O receives a marker for its incoming channel and finishes recording the state
of the incoming channel
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