
CS677: Distributed OSComputer Science Lecture 11, page 1

Last Class: Clock Synchronization

• Physical clocks

• Clock synchronization algorithms

– Cristian’s algorithm

– Berkeley algorithm

CS677: Distributed OSComputer Science Lecture 11, page 2

Today: More Canonical Problems

• Logical clocks

• Causality

– Vector timestamps

• Global state and termination detection

CS677: Distributed OSComputer Science Lecture 11, page 3

Global Positioning System

• Computing a position in a two-dimensional space.

CS677: Distributed OSComputer Science Lecture 11, page 4

Global Positioning System

• Real world facts that complicate GPS

1.It takes a while before data on a

satellite’s position reaches the

receiver.

2.The receiver’s clock is generally not

in synch with that of a satellite.

CS677: Distributed OSComputer Science Lecture 11, page 5

Clock Synchronization in Wireless
Networks

• Reference broadcast sync (RBS): receivers synchronize with one

another using RB server

– Mutual offset = Ti,s- Tj,s (can average over multiple readings)

CS677: Distributed OSComputer Science Lecture 11, page 6

Network Time Protocol

• Widely used standard - based on Cristian’s algo

CS677: Distributed OSComputer Science Lecture 11, page 7

Logical Clocks

• For many problems, internal consistency of clocks is

important

– Absolute time is less important

– Use logical clocks

• Key idea:

– Clock synchronization need not be absolute

– If two machines do not interact, no need to synchronize them

– More importantly, processes need to agree on the order in

which events occur rather than the time at which they occurred

CS677: Distributed OSComputer Science Lecture 11, page 8

Event Ordering

• Problem: define a total ordering of all events that occur

in a system

• Events in a single processor machine are totally ordered

• In a distributed system:

– No global clock, local clocks may be unsynchronized

– Can not order events on different machines using local times

• Key idea [Lamport]

– Processes exchange messages

– Message must be sent before received

– Send/receive used to order events (and synchronize clocks)

CS677: Distributed OSComputer Science Lecture 11, page 9

Happened Before Relation

• If A and B are events in the same process and A executed before B,

then A -> B

• If A represents sending of a message and B is the receipt of this

message, then A -> B

• Relation is transitive:

– A -> B and B -> C => A -> C

• Relation is undefined across processes that do not exchange

messages

– Partial ordering on events

CS677: Distributed OSComputer Science Lecture 11, page 10

Event Ordering Using HB

• Goal: define the notion of time of an event such that

– If A-> B then C(A) < C(B)

– If A and B are concurrent, then C(A) <, = or > C(B)

• Solution:

– Each processor maintains a logical clock LCi

– Whenever an event occurs locally at I, LCi = LCi+1

– When i sends message to j, piggyback Lci

– When j receives message from i

• If LCj < LCi then LCj = LCi +1 else do nothing

– Claim: this algorithm meets the above goals

CS677: Distributed OSComputer Science Lecture 11, page 11

Lamport!s Logical Clocks

CS677: Distributed OSComputer Science Lecture 11, page 12

Example: Totally-Ordered

Multicasting

• Updating a replicated database and leaving it in an inconsistent

state.

CS677: Distributed OSComputer Science Lecture 11, page 13

Causality

• Lamport’s logical clocks

– If A -> B then C(A) < C(B)

– Reverse is not true!!

• Nothing can be said about events by comparing time-stamps!

• If C(A) < C(B), then ??

• Need to maintain causality

– If a -> b then a is casually related to b

– Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)

– Capture causal relationships between groups of processes

– Need a time-stamping mechanism such that:

• If T(A) < T(B) then A should have causally preceded B

CS677: Distributed OSComputer Science Lecture 11, page 14

Vector Clocks

• Each process i maintains a vector Vi

– Vi[i] : number of events that have occurred at i

– Vi[j] : number of events I knows have occurred at process j

• Update vector clocks as follows

– Local event: increment Vi[I]

– Send a message :piggyback entire vector V

– Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the sender knows
occurred at another process k

• Also Vj[i] = Vj[i]+1

• Exercise: prove that if V(A)<V(B), then A causally
precedes B and the other way around.

CS677: Distributed OSComputer Science Lecture 11, page 15

Enforcing Causal Communication

• Figure 6-13. Enforcing causal communication.

CS677: Distributed OSComputer Science Lecture 11, page 16

Global State

• Global state of a distributed system

– Local state of each process

– Messages sent but not received (state of the queues)

• Many applications need to know the state of the system

– Failure recovery, distributed deadlock detection

• Problem: how can you figure out the state of a

distributed system?

– Each process is independent

– No global clock or synchronization

• Distributed snapshot: a consistent global state

CS677: Distributed OSComputer Science Lecture 11, page 17

Global State (1)

a) A consistent cut

b) An inconsistent cut

CS677: Distributed OSComputer Science Lecture 11, page 18

Distributed Snapshot Algorithm

• Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

• Any process can initiate the algorithm

– Checkpoint local state

– Send marker on every outgoing channel

• On receiving a marker

– Checkpoint state if first marker and send marker on outgoing
channels, save messages on all other channels until:

– Subsequent marker on a channel: stop saving state for that
channel

CS677: Distributed OSComputer Science Lecture 11, page 19

Distributed Snapshot

• A process finishes when

– It receives a marker on each incoming channel and processes

them all

– State: local state plus state of all channels

– Send state to initiator

• Any process can initiate snapshot

– Multiple snapshots may be in progress

• Each is separate, and each is distinguished by tagging the

marker with the initiator ID (and sequence number)

A

C

BM

M

CS677: Distributed OSComputer Science Lecture 11, page 20

Snapshot Algorithm Example

a) Organization of a process and channels for a distributed snapshot

CS677: Distributed OSComputer Science Lecture 11, page 21

Snapshot Algorithm Example

b) Process Q receives a marker for the first time and records its local state

c) Q records all incoming message

d) Q receives a marker for its incoming channel and finishes recording the state
of the incoming channel

