
CS677: Distributed OSComputer Science Lecture 9, page 1

Last Class: RPCs and RMI

• Case Study: Sun RPC

• Lightweight RPCs

• Remote Method Invocation (RMI)

– Design issues

CS677: Distributed OSComputer Science Lecture 9, page 2

Today: Communication Issues

• Message-oriented communication

– Persistence and synchronicity

• Stream-oriented communication

CS677: Distributed OSComputer Science Lecture 9, page 3

Persistence and Synchronicity in Communication

• General organization of a communication system in which hosts are connected
through a network

2-20

CS677: Distributed OSComputer Science Lecture 9, page 4

Persistence

• Persistent communication

– Messages are stored until (next) receiver is ready

– Examples: email, pony express

CS677: Distributed OSComputer Science Lecture 9, page 5

Transient Communication

• Transient communication

– Message is stored only so long as sending/receiving

application are executing

– Discard message if it can’t be delivered to next server/receiver

– Example: transport-level communication services offer

transient communication

– Example: Typical network router – discard message if it can’t

be delivered next router or destination

CS677: Distributed OSComputer Science Lecture 9, page 6

Synchronicity

• Asynchronous communication

– Sender continues immediately after it has submitted the message

– Need a local buffer at the sending host

• Synchronous communication

– Sender blocks until message is stored in a local buffer at the

receiving host or actually delivered to sending

– Variant: block until receiver processes the message

• Six combinations of persistence and synchronicity

CS677: Distributed OSComputer Science Lecture 9, page 7

Persistence and Synchronicity Combinations

a) Persistent asynchronous communication (e.g., email)

b) Persistent synchronous communication

2-22.1

CS677: Distributed OSComputer Science Lecture 9, page 8

Persistence and Synchronicity Combinations

c) Transient asynchronous communication (e.g., UDP)

d) Receipt-based transient synchronous communication

2-22.2

CS677: Distributed OSComputer Science Lecture 9, page 9

Persistence and Synchronicity Combinations

e) Delivery-based transient synchronous communication at message delivery
(e.g., asynchronous RPC)

f) Response-based transient synchronous communication (RPC)

CS677: Distributed OSComputer Science Lecture 9, page 10

Message-oriented Transient

Communication

• Many distributed systems built on top of simple message-oriented model

– Example: Berkeley sockets

CS677: Distributed OSComputer Science Lecture 9, page 11

Berkeley Socket Primitives

Release the connectionClose

Receive some data over the connectionReceive

Send some data over the connectionSend

Actively attempt to establish a connectionConnect

Block caller until a connection request arrivesAccept

Announce willingness to accept connectionsListen

Attach a local address to a socketBind

Create a new communication endpointSocket

MeaningPrimitive

CS677: Distributed OSComputer Science Lecture 9, page 12

Message-Passing Interface (MPI)

• Sockets designed for network communication (e.g., TCP/IP)

– Support simple send/receive primitives

• Abstraction not suitable for other protocols in clusters of
workstations or massively parallel systems

– Need an interface with more advanced primitives

• Large number of incompatible proprietary libraries and protocols

– Need for a standard interface

• Message-passing interface (MPI)

– Hardware independent

– Designed for parallel applications (uses transient communication)

• Key idea: communication between groups of processes

– Each endpoint is a (groupID, processID) pair

CS677: Distributed OSComputer Science Lecture 9, page 13

MPI Primitives

Check if there is an incoming message, but do not blockMPI_irecv

Receive a message; block if there are noneMPI_recv

Pass reference to outgoing message, and wait until receipt startsMPI_issend

Pass reference to outgoing message, and continueMPI_isend

Send a message and wait for replyMPI_sendrecv

Send a message and wait until receipt startsMPI_ssend

Send a message and wait until copied to local or remote bufferMPI_send

Append outgoing message to a local send bufferMPI_bsend

MeaningPrimitive

CS677: Distributed OSComputer Science Lecture 9, page 14

Message-oriented Persistent

Communication

• Message queuing systems

– Support asynchronous persistent communication

– Intermediate storage for message while sender/receiver are

inactive

– Example application: email

• Communicate by inserting messages in queues

• Sender is only guaranteed that message will be

eventually inserted in recipient’s queue

– No guarantees on when or if the message will be read

– “Loosely coupled communication”

CS677: Distributed OSComputer Science Lecture 9, page 15

Message-Queuing Model

Install a handler to be called when a message is put into the specified queue.Notify

Check a specified queue for messages, and remove the first. Never block.Poll

Block until the specified queue is nonempty, and remove the first messageGet

Append a message to a specified queuePut

MeaningPrimitive

CS677: Distributed OSComputer Science Lecture 9, page 16

Stream Oriented Communication

• Message-oriented communication: request-response

– When communication occurs and speed do not affect correctness

• Timing is crucial in certain forms of communication

– Examples: audio and video (“continuous media”)

– 30 frames/s video => receive and display a frame every 33ms

• Characteristics

– Isochronous communication

• Data transfers have a maximum bound on end-end delay and
jitter

– Push mode: no explicit requests for individual data units beyond
the first “play” request

CS677: Distributed OSComputer Science Lecture 9, page 17

Examples

Single sender and receiver

One sender
Multiple receivers

CS677: Distributed OSComputer Science Lecture 9, page 18

Quality of Service (QoS)

• Time-dependent and other requirements are specified as quality of service (QoS)

– Requirements/desired guarantees from the underlying systems

– Application specifies workload and requests a certain service quality

– Contract between the application and the system

•Loss sensitivity (bytes)

•Loss interval (µsec)

•Burst loss sensitivity (data units)

•Minimum delay noticed (µsec)

•Maximum delay variation (µsec)

•Quality of guarantee

•maximum data unit size (bytes)

•Token bucket rate (bytes/sec)

•Toke bucket size (bytes)

•Maximum transmission rate
(bytes/sec)

Service RequiredCharacteristics of the Input

CS677: Distributed OSComputer Science Lecture 9, page 19

Specifying QoS: Token bucket

• The principle of a token bucket algorithm

– Parameters (rate r, burst b)

– Rate is the average rate, burst is the maximum number of packets that can arrive simultaneously

CS677: Distributed OSComputer Science Lecture 9, page 20

Enforcing QoS

• Enforce at end-points (e.g., token bucket)

– No network support needed

• Mark packets and use router support

– Differentiated services: expedited & assured forwarding

• Use buffers at receiver to mask jitter

• Packet losses

– Handle using forward error correction

– Use interleaving to reduce impact

CS677: Distributed OSComputer Science Lecture 9, page 21

Stream synchronization

• Multiple streams:

– Audio and video; layered video

• Need to sync prior to playback

– Timestamp each stream and sync up data units prior to

playback

• Sender or receiver?

CS677: Distributed OSComputer Science Lecture 9, page 22

Multicasting

• Group communication

– IP multicast versus application-level multicast

– Construct an overlay multicast tree rooted at the sender

– Send packet down each link in the tree

• Issues: tree construction, dynamic joins and leaves

CS677: Distributed OSComputer Science Lecture 9, page 23

New Topic: Naming

• Names are used to share resources, uniquely identify

entities and refer to locations

• Need to map from name to the entity it refers to

– E.g., Browser access to www.cnn.com

– Use name resolution

• Differences in naming in distributed and non-distributed

systems

– Distributed systems: naming systems is itself distributed

• How to name mobile entities?

CS677: Distributed OSComputer Science Lecture 9, page 24

Example: File Names

• Hierarchical directory structure (DAG)

– Each file name is a unique path in the DAG

– Resolution of /home/steen/mbox a traversal of the DAG

• File names are human-friendly

CS677: Distributed OSComputer Science Lecture 9, page 25

Resolving File Names across Machines

• Remote files are accessed using a node name, path name

• NFS mount protocol: map a remote node onto local DAG

– Remote files are accessed using local names! (location independence)

– OS maintains a mount table with the mappings

CS677: Distributed OSComputer Science Lecture 9, page 26

Name Space Distribution

• Naming in large distributed systems

– System may be global in scope (e.g., Internet, WWW)

• Name space is organized hierarchically

– Single root node (like naming files)

• Name space is distributed and has three logical layers

– Global layer: highest level nodes (root and a few children)

• Represent groups of organizations, rare changes

– Administrational layer: nodes managed by a single organization

• Typically one node per department, infrequent changes

– Managerial layer: actual nodes

• Frequent changes

– Zone: part of the name space managed by a separate name server

CS677: Distributed OSComputer Science Lecture 9, page 27

Name Space Distribution Example

• An example partitioning of the DNS name space, including

Internet-accessible files, into three layers.

CS677: Distributed OSComputer Science Lecture 9, page 28

Name Space Distribution

• A comparison between name servers for implementing nodes from a large-scale name
space partitioned into a global layer, as an administrational layer, and a managerial layer.

• The more stable a layer, the longer are the lookups valid (and can be cached longer)

SometimesYesYesIs client-side caching applied?

NoneNone or fewManyNumber of replicas

ImmediateImmediateLazyUpdate propagation

ImmediateMillisecondsSecondsResponsiveness to lookups

Vast numbersManyFewTotal number of nodes

DepartmentOrganizationWorldwideGeographical scale of network

ManagerialAdministrationalGlobalItem

