
CS677: Distributed OSComputer Science Lecture 2, page 1

Today

• Architectures for distributed systems (Chapter 2)

– Centralized, decentralized, hybrid

– Middleware

– Self-managing systems

CS677: Distributed OSComputer Science Lecture 2, page 2

Architectural Styles

• Important styles of architecture for
distributed systems

– Layered architectures

– Object-based architectures

– Data-centered architectures

– Event-based architectures

CS677: Distributed OSComputer Science Lecture 2, page 3

Layered Design

• Each layer uses previous layer to implement new functionality
that is exported to the layer above

CS677: Distributed OSComputer Science Lecture 2, page 4

Object-based Style

• Each object corresponds to a components

• Components interact via remote procedure calls

– Popular in client-server systems

CS677: Distributed OSComputer Science Lecture 2, page 5

Event-based architecture

• Communicate via a common repository

– Use a publish-subscribe paradigm

– Consumers subscribe to types of events

– Events are delivered once published by any publisher

CS677: Distributed OSComputer Science Lecture 2, page 6

Shared data-space

• “Bulletin-board” architecture

– Decoupled in space and time

– Post items to shared space; consumers pick up at a later time

CS677: Distributed OSComputer Science Lecture 2, page 7

Client-Server Architectures

• Most common style: client-server architecture

• Application layering

• User-interface level

• Processing level

• Data level

CS677: Distributed OSComputer Science Lecture 2, page 8

Search Engine Example

• Search engine architecture with 3 layers

CS677: Distributed OSComputer Science Lecture 2, page 9

Multitiered Architectures

• The simplest organization is to have only

two types of machines:

• A client machine containing only the

programs implementing (part of) the user-

interface level

• A server machine containing the rest,

– the programs implementing the processing

and data level

CS677: Distributed OSComputer Science Lecture 2, page 10

A Spectrum of Choices

• Figure 2-5. Alternative client-server organizations

(a)–(e).

CS677: Distributed OSComputer Science Lecture 2, page 11

Three-tier Web Applications

• Server itself uses a “client-server” architecture

• 3 tiers: HTTP, J2EE and database

– Very common in most web-based applications

CS677: Distributed OSComputer Science Lecture 2, page 12

Decentralized Architectures

• Peer-to-peer systems

– Removes distinction between a client and a server

– Overlay network of nodes

• Chord: structured peer-to-peer system

– Use a distributed hash table to locate objects

• Data item with key k -> smallest node with id >= k

CS677: Distributed OSComputer Science Lecture 2, page 13

Content Addressable Network (CAN)

• CAN: d-dimensional coordinate system

– Partitioned among all nodes in the system

– Example: [0,1] x [0,1] space across 6 nodes

• Every data item maps to a point

• Join: pick a random point, split with node for that point

• Leave: harder, since a merge may not give symmetric partitions

CS677: Distributed OSComputer Science Lecture 2, page 14

Unstructured P2P Systems

• Topology based on randomized algorithms

– Each node pick a random set of nodes and becomes their

neighbors

• Gnutella

– Choice of degree impacts network dynamics

CS677: Distributed OSComputer Science Lecture 2, page 15

Structured and Unstructured P2P

• Can move from one to another

– Carefully exchange and select entries from partial views

CS677: Distributed OSComputer Science Lecture 2, page 16

SuperPeers

• Some nodes become “distinguished”

– Take on more responsibilities (need to have or be willing to

donate more resources)

– Example: Skype super-peer

CS677: Distributed OSComputer Science Lecture 2, page 17

Edge-Server Systems

• Edge servers: from client-server to client-proxy-server

• Content distribution networks: proxies cache web

content near the edge

CS677: Distributed OSComputer Science Lecture 2, page 18

Collaborative Distributed Systems

• BitTorrent: Collaborative P2P downloads

– Download chunks of a file from multiple peers

• Reassemble file after downloading

– Use a global directory (web-site) and download a .torrent

• .torrent contains info about the file

– Tracker: server that maintains active nodes that have requested chunks

– Force altruism:

» If P sees Q downloads more than uploads, reduce rate of sending to Q

CS677: Distributed OSComputer Science Lecture 2, page 19

Self-Managing Systems

• System is adaptive

– Monitors itself and takes action autonomously when needed

• Autonomic computing, self-managing systems

• Self-*: self-managing, self-healing

• Example: automatic capacity provisioning

– Vary capacity of a web server based on demand

Monitor

workload
Compute current/

future demand
Adjust allocation

CS677: Distributed OSComputer Science Lecture 2, page 20

Feedback Control Model

• Use feedback and control theory to design a self-
managing system

