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Multimedia Operating Systems

• Support multiple kinds of applications

– Multimedia applications: Streaming audio, video, games, etc.

– Traditional applications: Editors, compilers, web servers, etc.

• Satisfy different application characteristics and requirements

• Traditional Operating Systems:

– Goal is to maximize system throughput and utilization

– No differentiation between various application classes
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Application Requirements

• Soft real-time applications: statistical guarantees

– Examples: Streaming media, virtual games

• Interactive applications: no absolute performance guarantees, but low
average response times

– Examples: Editors, compilers

• Throughput-intensive Applications: no performance guarantees, but high
throughput

– Examples: http, ftp servers
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OS Design Requirements

• Fair, Proportionate resource allocation:

– Divide resources according to application requirements

– Example: 30% of CPU to streaming, 20% to http server, etc.

• Application Isolation:

– Prevent misbehaving or overloaded applications from affecting others

– Example: overloaded web server should not affect streaming media server

• Service Differentiation:

– Scheduling policy appropriate for the application class
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Processor Scheduling

• Different application classes ⇒ different scheduling algorithms

– Example: Time-sharing for best-effort applications, proportional-share for soft

real-time

• Need a scheduling framework for service differentiation

• Solution: Hierarchical partitioning of CPU bandwidth
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Hierarchical CPU Scheduling

• Hierarchical partitioning
specified as a tree

• Leaf nodes:

– Aggregation of threads

– Scheduled by application-specific

scheduler

• Intermediate nodes:

– Aggregation of application

classes

– Scheduled by an algorithm that

achieves hierarchical partitioning
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Requirements of a Hierarchical CPU Scheduler

• Should achieve proportionate allocation of CPU bandwidth allocated to a
class among its sub-classes, even when the bandwidth available to a class
fluctuates over time

• Should not require computational requirements of tasks to be known a
priori

• Should provide throughput and delay guarantees

• Should be computationally efficient
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Proportionate Allocation

• Assign weights to tasks

• Tasks receive CPU bandwidth in proportion to weights

• Ideal definition:
Wf(t1,t2)

rf
− Wm(t1,t2)

rm
= 0

Wf(t1, t2) : aggregate work done by thread f in interval in [t1, t2]

rf : weight of thread f

• Quantum-based scheduling:
∣

∣

∣

Wf(t1,t2)

rf
− Wm(t1,t2)

rm

∣

∣

∣
≤ H(f, m)

• H(f, m): fairness measure

• Objective: achieve small fairness measure
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Generalized Processor Sharing (GPS)

• Idealized Algorithm:

– Infinitesimally small quanta

– No scheduling overhead

• Achieves perfect proportionate allocation

– Each task m gets a virtual CPU with capacity ( rm
P

i ri
) · C

• Lower bound on Fairness Measure of any algorithm

– H(f, m) = 0
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Start-Time Fair Queuing (SFQ)

• Start tag Sf and finish tag Ff :

Sf = max{v(A(qj
f)), Ff}

Ff = Sf +
l
j
f

rf

q
j
f : jth quantum of thread f

l
j
f : length of q

j
f

A(qj
f) : time at which the jth quantum is requested

rf : weight of thread f

• Virtual time v(t): start tag of the thread in service at time t

• Threads are serviced in the increasing order of start tags
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SFQ: An Example

• Threads A and B s.t. rA : rB = 1 : 2
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Properties of SFQ

• SFQ achieves fair allocation of CPU regardless of variation in available
processing bandwidth

∣

∣

∣

∣

Wf(t1, t2)

rf

−
Wm(t1, t2)

rm

∣

∣

∣

∣

≤
lmax
f

rf

+
lmax
m

rm

• SFQ does not require the length of the quantum to be known a priori

• SFQ provides bounds on maximum delay incurred and minimum
throughput achieved by threads in realistic environments

• SFQ is computationally efficient
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Multimedia OS Case Study: QLinux

• QoS-Enhanced version of Linux

• Replaces traditional Linux resource schedulers
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QLinux Components: CPU Scheduler

• Hierarchical SFQ (HSFQ):

– Leaf nodes: Class-specific schedulers

– Intermediate nodes: SFQ
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QLinux Components: Packet Scheduler

• HSFQ:

– Sockets attached to queues

– Queues scheduled hierarchically
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QLinux Components: Disk Scheduler

• Cello:

– Class-independent scheduler:

Weighted bandwidth allocation

– Class-specific scheduler:

Service differentiation S1 S2
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QLinux Components: Network Subsystem

• Lazy Receiver Processing (LRP)

• Traditional OS network subsystem:

– Interrupt driven processing of incoming packets

– Inappropriate accounting of resource usage

• LRP:

– Delays protocol processing: accurate resource accounting

– Early demultiplexing: application isolation
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