
Department of Computer Science, UMass Amherst

Multimedia Operating Systems

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 1

Department of Computer Science, UMass Amherst

Multimedia Operating Systems

• Support multiple kinds of applications

– Multimedia applications: Streaming audio, video, games, etc.

– Traditional applications: Editors, compilers, web servers, etc.

• Satisfy different application characteristics and requirements

• Traditional Operating Systems:

– Goal is to maximize system throughput and utilization

– No differentiation between various application classes

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 2

Department of Computer Science, UMass Amherst

Application Requirements

• Soft real-time applications: statistical guarantees

– Examples: Streaming media, virtual games

• Interactive applications: no absolute performance guarantees, but low
average response times

– Examples: Editors, compilers

• Throughput-intensive Applications: no performance guarantees, but high
throughput

– Examples: http, ftp servers

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 3

Department of Computer Science, UMass Amherst

OS Design Requirements

• Fair, Proportionate resource allocation:

– Divide resources according to application requirements

– Example: 30% of CPU to streaming, 20% to http server, etc.

• Application Isolation:

– Prevent misbehaving or overloaded applications from affecting others

– Example: overloaded web server should not affect streaming media server

• Service Differentiation:

– Scheduling policy appropriate for the application class

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 4

Department of Computer Science, UMass Amherst

Processor Scheduling

• Different application classes ⇒ different scheduling algorithms

– Example: Time-sharing for best-effort applications, proportional-share for soft

real-time

• Need a scheduling framework for service differentiation

• Solution: Hierarchical partitioning of CPU bandwidth

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 5

Department of Computer Science, UMass Amherst

Hierarchical CPU Scheduling

• Hierarchical partitioning
specified as a tree

• Leaf nodes:

– Aggregation of threads

– Scheduled by application-specific

scheduler

• Intermediate nodes:

– Aggregation of application

classes

– Scheduled by an algorithm that

achieves hierarchical partitioning

root

Int TP SRTw1=1
(33%)

w2=1
(33%)

w3=1
(33%)

audio videow1=1
(20%)

w2=4
(80%)

Threads

w1=1 w2=2
(33%) (66%)

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 6

Department of Computer Science, UMass Amherst

Requirements of a Hierarchical CPU Scheduler

• Should achieve proportionate allocation of CPU bandwidth allocated to a
class among its sub-classes, even when the bandwidth available to a class
fluctuates over time

• Should not require computational requirements of tasks to be known a
priori

• Should provide throughput and delay guarantees

• Should be computationally efficient

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 7

Department of Computer Science, UMass Amherst

Proportionate Allocation

• Assign weights to tasks

• Tasks receive CPU bandwidth in proportion to weights

• Ideal definition:
Wf(t1,t2)

rf
− Wm(t1,t2)

rm
= 0

Wf(t1, t2) : aggregate work done by thread f in interval in [t1, t2]

rf : weight of thread f

• Quantum-based scheduling:
∣

∣

∣

Wf(t1,t2)

rf
− Wm(t1,t2)

rm

∣

∣

∣
≤ H(f, m)

• H(f, m): fairness measure

• Objective: achieve small fairness measure

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 8

Department of Computer Science, UMass Amherst

Generalized Processor Sharing (GPS)

• Idealized Algorithm:

– Infinitesimally small quanta

– No scheduling overhead

• Achieves perfect proportionate allocation

– Each task m gets a virtual CPU with capacity (rm
P

i ri
) · C

• Lower bound on Fairness Measure of any algorithm

– H(f, m) = 0

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 9

Department of Computer Science, UMass Amherst

Start-Time Fair Queuing (SFQ)

• Start tag Sf and finish tag Ff :

Sf = max{v(A(qj
f)), Ff}

Ff = Sf +
l
j
f

rf

q
j
f : jth quantum of thread f

l
j
f : length of q

j
f

A(qj
f) : time at which the jth quantum is requested

rf : weight of thread f

• Virtual time v(t): start tag of the thread in service at time t

• Threads are serviced in the increasing order of start tags

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 10

Department of Computer Science, UMass Amherst

SFQ: An Example

• Threads A and B s.t. rA : rB = 1 : 2

Thread A

Thread B

start tag

finish tag

Virtual Time

0

0

100 200 Real Time (ms)

0

10

0

5

5

10

10

20

10

15

15

20

20

30

30

40

40

exits

exits

50

60

50

55

55

60

60

70

60

65

65

70

70

80

70

75

75

80

80

85

50 150

20

40

60

50

runnableblocked

blocked runnable

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 11

Department of Computer Science, UMass Amherst

Properties of SFQ

• SFQ achieves fair allocation of CPU regardless of variation in available
processing bandwidth

∣

∣

∣

∣

Wf(t1, t2)

rf

−
Wm(t1, t2)

rm

∣

∣

∣

∣

≤
lmax
f

rf

+
lmax
m

rm

• SFQ does not require the length of the quantum to be known a priori

• SFQ provides bounds on maximum delay incurred and minimum
throughput achieved by threads in realistic environments

• SFQ is computationally efficient

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 12

Department of Computer Science, UMass Amherst

Multimedia OS Case Study: QLinux

• QoS-Enhanced version of Linux

• Replaces traditional Linux resource schedulers

Cello disk
scheduler

Lazy Receiver
 Processing

H−SFQ CPU
 scheduler

H−SFQ Packet
 scheduler

N
et

w
or

k
In

te
rf

ac
e

N
et

w
or

k

Applications (interactive, throughput−intensive, soft real−time)

user−space

kernel−space

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 13

Department of Computer Science, UMass Amherst

QLinux Components: CPU Scheduler

• Hierarchical SFQ (HSFQ):

– Leaf nodes: Class-specific schedulers

– Intermediate nodes: SFQ

root

Int TP SRTw1=1
(33%)

w2=1
(33%)

w3=1
(33%)

audio videow1=1
(20%)

w2=4
(80%)

Threads

w1=1 w2=2
(33%) (66%)

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 14

Department of Computer Science, UMass Amherst

QLinux Components: Packet Scheduler

• HSFQ:

– Sockets attached to queues

– Queues scheduled hierarchically

root

D1 D2

SRThttp w2=2
(66%)

w1=1
(33%)

packet
queue

 socket1 socket2
 Audio Application

w1=1
(50%)

w2=1
(50%) w1=1 w2=1

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 15

Department of Computer Science, UMass Amherst

QLinux Components: Disk Scheduler

• Cello:

– Class-independent scheduler:

Weighted bandwidth allocation

– Class-specific scheduler:

Service differentiation S1 S2

C

Scheduled
 Queue

FCFS

Pending
 Queues

Class−specific
 Schedulers

Class−independent
 Scheduler

Interactive
 Class

Throughput
 intensive
 Class

Soft real−time
 Class

S3

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 16

Department of Computer Science, UMass Amherst

QLinux Components: Network Subsystem

• Lazy Receiver Processing (LRP)

• Traditional OS network subsystem:

– Interrupt driven processing of incoming packets

– Inappropriate accounting of resource usage

• LRP:

– Delays protocol processing: accurate resource accounting

– Early demultiplexing: application isolation

CMPSCI 677: Distributed Operating Systems Lecture 26, Page 17

