Multimedia Servers

- Multimedia: digital audio, video, images,..
- Streaming audio and video
 - Very different characteristics from textual and numeric files
 - Need different techniques for managing multimedia data
- Video: sequence of images played out at a constant rate
- Digital video is often stored in compressed format

Need For Video Compression

• Large data rate and storage capacity requirement

Satellite imagery	$180 imes 180 \ km^2$ 30 m^2	600 MB/image
NTSC video	resolution 30 frames/s, 640x480 pixels, 3 bytes/pixel	30 MBytes/s

- Compression algorithms exploit:
 - Spatial redundancy (i.e., correlation between neighboring pixels)
 - Spectral redundancy (i.e., correlation between different frequency spectrum)
 - Temporal redundancy (i.e., correlation between successive frames)

Requirements for Compression Algorithms

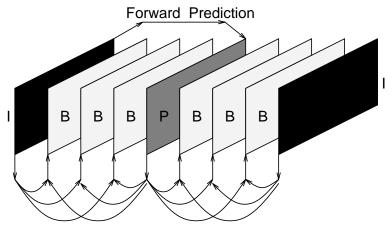
• Objectives:

- Minimize the complexity of the encoding and decoding process
- Ensure a good quality of decoded images
- Achieve high compression ratios
- Other general requirements:
 - Independence of specific size and frame rate
 - Support various data rates

Classification of Compression Algorithms

- Lossless compression:
 - Reconstructed image is mathematically equivalent to the original image (i.e., reconstruction is perfect)
 - Drawback: achieves only a modest level of compression (about a factor of 5)

• Lossy compression:


- Reconstructed image demonstrates degradation in the quality of the image \Rightarrow the techniques are irreversible
- Advantage: achieves very high degree of compression (compression ratios up to 200)
- Objective: maximize the degree of compression while maintaining the quality of the image to be "virtually lossless"

MPEG - An Overview

- Two categories: intra-frame and inter-frame encoding
- Contrasting requirements: delicate balance between intra- and inter-frame encoding
 - Need for high compression \Rightarrow only intra-frame encoding is not sufficient
 - Need for random access \Rightarrow best satisfied by intra-frame encoding
- Overview of the MPEG algorithm:
 - DCT-based compression for the reduction of spatial redundancy (similar to JPEG)
 - Block-based motion compensation for exploiting the temporal redundancy
 - * Motion compensation using both *causal* (predictive coding) and *non-causal* (interpolative coding) predictors

Exploiting Temporal Redundancy

- Three types of frames in MPEG:
 - I-frames:
 - Intra-coded frames, provide access points for random access - yield moderate compression
 - P-frames:
 - * Predicted frames are encoded with reference to a previous I or P frame
 - B-frames:
 - * Bidirectional frames encoded using the previous and the next I/P frame
 - * Achieves maximum compression

Bidirectional Prediction

Multimedia Storage Servers

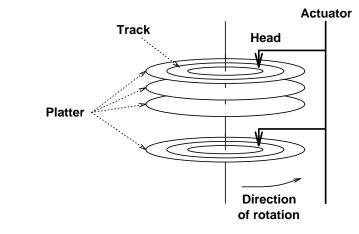
- Digitally stores heterogeneous data objects (consisting of audio, video, imagery, textual, and numeric data) on extremely high capacity storage devices
- Fundamental differences in data type characteristics and requirements
 - Best-effort service for text vs. real-time for video
 - Small read/writes for text vs. large read/writes for video

-

Approach

• Techniques for efficiently managing video data

- Placement techniques
- Fault tolerance issues
- Scheduling, retrieval, and admission control
- I/O stream sharing (buffering, batching, caching, ...)


• Methodology:

- What are the fundamental issues ?
- How to address these issues ? (Theory)
- How to instantiate the solutions ? (Practice)

Terminology

• Disk fundamentals:

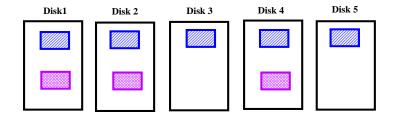
- Seek time
- Rotational latency
- Transfer rate
- Scheduling algorithms: FCFS, SCAN, SSTF, SATF

Terminology (Cont'd)

- Disk arrays
- Striping
 - Interleave the storage of each media stream among disks
 - Stripe unit: maximum amount of logically contiguous data that is stored on a single disk
 - Degree of striping: Number of disks across which a media stream is striped
- Redundant and non-redundant disk arrays

Video Storage Server: Fundamentals

- Data transfer rate of disks \gg data rate requirement of isolated video streams \Rightarrow designing single-user video servers is straightforward
- Server stores digitized video streams on an array of disks
- Clients can request the retrieval of video streams for real-time playback
- Two possible server architectures:
 - Client-pull
 - Server-push


Client-pull Architecture

- Server retrieves data only in response to an explicit request from client
- Used in conventional file system to provide *best-effort* service
- Adapting client-pull architecture for video: clients ensure playback continuity by
 - Determining the playback instant of a frame
 - Estimating response time for each request
 - Issuing a read request accordingly
- Response time: a function of the system load \Rightarrow varies widely over time \Rightarrow estimation is non-trivial

Server-push Architecture

- Periodicity of video playback \Rightarrow service clients in periodic *rounds*
- Round: retrieve a fixed number of frames for each media stream
- Continuous retrieval \Rightarrow total service time must not exceed the playback duration of frames retrieved during a round

Efficient Placement on Disk Arrays

- Stripe video streams on disk arrays in terms of blocks (or stripe units)
- Two paramaters: stripe unit size and degree of striping
- Stripe unit size (block size): use large (128-512 KB) block size
 - Large block size reduces disk seek and rotational latency overheads

Retrieval Techniques

- Streaming media data imposes real-time constraints on retrieval
 - Need to retrieve 30 frame in each second
 - Client or server buffering can provide some leeway but still need guarantees
- Performance guarantees on retrieval \rightarrow need to limit the number of clients accessing a server
- Employ admission control algorithms

Admission Control

- Server push retrieval: retrieve f frames in each periodic round ${\cal R}$
- Continuous playback requirements: retrieval time of $f_1, f_2, ... f_k$ frames for all k clients should not exceed R
- Admission control test
 - Estimate resoure needs of new client (time to retrieve f_i frames)
 - Verify if total resource needs \leq capacity (total retrieval time \leq R)
 - If so, admit, else deny