Last class: Distributed File
Systems

* Issues in distributed file systems

* Sun’s Network File System case study

m Compu'rer Science CS677: Distributed OS Lecture 19, page 1
UMASS

Today: NFS, Coda

» Case Study: NFS (continued)

 Case Study: Coda File System

m Compu'rer Science CS677: Distributed OS Lecture 19, page 2
UMASS

Semantics of File Sharing

a) On a single processor, when a read
follows a write, the value returned by the
read is the value just written.

Client machine #1

b) In a distributed system with caching, > \
rocess
obsolete values may be returned. A
4 E
2 \Write "c" 1. Read "ab"
File server
Original file
Single machine .Z
L4
5
rocess \
A 3. Read gets "ab"
[alb]c]

Client machine #2

F’rogess \ 4/
Process
B

1. Write "¢" 2. Read gets "abc"

?mﬁss Computer Science (a) (b)

Semantics of File Sharing

Method Comment

UNIX semantics Every operation on a file is instantly visible to all processes
Session semantics No changes are visible to other processes until the file is closed
Immutable files No updates are possible; simplifies sharing and replication
Transaction All changes occur atomically

* Four ways of dealing with the shared files in a distributed system.
— NFS implements session semantics
 Can use remote/access model for providing UNIX semantics (expensive)

* Most implementations use local caches for performance and provide session
semantics

m Computer Science CS677: Distributed OS Lecture 19, page 4
UMASS

File Locking in NFS

Operation Description

Lock Creates a lock for a range of bytes (non-blocking_
Lockt Test whether a conflicting lock has been granted
Locku Remove a lock from a range of bytes

Renew Renew the lease on a specified lock

* NFS supports file locking
* Applications can use locks to ensure consistency
* Locking was not part of NFS until version 3
* NFS v4 supports locking as part of the protocol (see above table)

CS677: Distributed OS

m Computer Science
UMASS

Lecture 19, page 5

File Locking: Share Reservations

Current file denial state

NONE READ WRITE BOTH
READ Succeed Fail Succeed Fail
Request WRITE Succeed Succeed Fail Fail
access
BOTH Succeed Fail Fail Fail
(@)
Requested file denial state
NONE READ WRITE BOTH
READ Succeed Fail Succeed Fail
Current - -
access WRITE Succeed Succeed Fail Fail
state BOTH Succeed Fail Fail Fail
(b)
. The result of an open operation with share reservations in NFS.

a) When the client requests shared access given the current denial state.
b) When the client requests a denial state given the current file access state.

m Computer Science
UMASS

CS677: Distributed OS Lecture 19, page 6

Client Caching

* Client-side caching is left to the implementation (NFS does not prohibit it)
— Different implementation use different caching policies
* Sun: allow cache data to be stale for up to 30 seconds

Client NFS server
application

Memory
cache

Disk
cache

Network

m Computer Science CS677: Distributed OS Lecture 19, page 7
UMASS

Client Caching: Delegation

* NFS V4 supports open delegation
— Server delegates local open and close requests to the NFS client
— Uses a callback mechanism to recall file delegation.

1. Client asks for file

Client S
en 2. Server delegates file erver

o ——[oufe |

i
Local copy 3. Server recalls delegation

T y{Updatedtid

4 Client sends returns file

m Computer Science CS677: Distributed OS Lecture 19, page 8
UMASS

RPC Failures

Client Server Client Server
w‘ XID = 1234

XID=1234 |
| process v
| request i
/ XID=1234 ’

/ < Cache v

S
Time Time

a)
b)
c)

(a)

(k)

Client
XD =1234

reply is lost

XID = 1234

(©)

P

Server

Three situations for handling retransmissions: use a duplicate request cache

The request is still in progress

The reply has just been returned

The reply has been some time ago, but was lost.

Use a duplicate-request cache: transaction Ids on RPCs, results cached

m Computer Science
UMASS

CS677: Distributed OS

Security

» The NFS security architecture.

— Simplest case: user ID, group ID authentication only

Client

‘ Virtual file system layer

v

Access
control

Y
Local file)
system interface NFS client
RPC client
stub

Lecture 19, page 9

Secure channel

m Computer Science
UMASS

CS677: Distributed OS

Server
Virtual file system layer ‘
A +
Access
control
Local file
NFS server system interface
RPC server
stub

Lecture 19, page 10

Secure RPCs

Client machine Server machine
NFS client NFS server
| |
RPC client stub RPC server stub

[[
RPCSEC_GSS RPCSEC_GSS

Kerberos
Kerberos

T

Network

e Secure RPC in NFS version 4.

m Computer Science CS677: Distributed OS Lecture 19, page 11
UMASS

Replica Servers

NFS ver 4 supports replications

Entire file systems must be replicated

FS LOCATION attribute for each file

Replicated servers: implementation specific

m Computer Science CS677: Distributed OS Lecture 19, page 12
UMASS

Coda

* Coda: descendent of the Andrew file system at CMU

— Andrew designed to serve a large (global community)

» Salient features:
— Support for disconnected operations
» Desirable for mobile users

— Support for a large number of users

m Compufer Science CS677: Distributed OS Lecture 19, page 13
UMASS

Overview of Coda

Transparent access
to a Vice file server

Vice file
server

* Centrally administered Vice file servers
* Large number of virtue clients

m Computer Science CS677: Distributed OS Lecture 19, page 14
UMASS

Virtue: Coda Clients

Virtue client machine

User User Venus
process process process
A 4
RPC client
stub

h 4 A4

Local file :1])
system interface Virtual file system layer

% Local OS

* The internal organization of a Virtue workstation.
— Designed to allow access to files even if server is unavailable
— Uses VFS and appears like a traditional Unix file system

Network

m Computer Science CS677: Distributed OS Lecture 19, page 15
UMASS

Communication in Coda

CI_ien’F Server
application
: Application-specific #
RPC —| Client protocol Server
side effect side effect
RPC client RPC protocol RPC server
stub stub

* Coda uses RPC2: a sophisticated reliable RPC system

— Start a new thread for each request, server periodically informs client it is still
working on the request

* RPC2 supports side-effects: application-specific protocols
— Useful for video streaming [where RPCs are less useful]
« RPC2 also has multicast support

m Computer Science CS677: Distributed OS Lecture 19, page 16
UMASS

Communication: Invalidations

Client Client
Invalidate Reply
Server Server
Invalidate Invalidate Reply
Client > Clent N
Time —™
(@) (k)

a) Sending an invalidation message one at a time.
b) Sending invalidation messages in parallel.
Can use MultiRPCs [Parallel RPCs] or use Multicast

- Fully transparent to the caller and callee [looks like normal RPC]

m Computer Science
UMASS

CS677: Distributed OS Lecture 19, page 17

Naming

Naming inherited from server's hame space

Client A Server ClientB

A

Exported directory
mounted by client

- v
\
/ N
. \
) v
\
! \
! \
! v
! v
v

Exported directory
mounted by client

* Clients in Coda have access to a single shared name space

Network

« Files are grouped into volumes [partial subtree in the directory structure]

m Computer Science
UMASS

Volume is the basic unit of mounting

Namespace: /afs/filesrv.cs.umass.edu [same namespace on all client; different from NFS]

Name lookup can cross mount points: support for detecting crossing and automounts

CS677: Distributed OS

Lecture 19, page 18

File Identifiers

Volume
replication DB ‘ RVID ‘ File handle |

i
|
VIDA, i File server
VID2 i 4
Server‘ File handle |
| I
Serverl | @
& s
Server2 | File server
Volume i
location DB h J
Server‘ File handle |
— "+

* Each file in Coda belongs to exactly one volume
— Volume may be replicated across several servers
— Multiple logical (replicated) volumes map to the same physical volume
— 96 bit file identifier = 32 bit RVID + 64 bit file handle

m Computer Science CS677: Distributed OS Lecture 19, page 19
UMASS

Sharing Files in Coda

Session SA

Client — T TT———_

Invalidate
Close

Open(WR) File f

Client

T Time —»

Session SB

* Transactional behavior for sharing files: similar to share reservations in NFS
— File open: transfer entire file to client machine [similar to delegation]
— Uses session semantics: each session is like a transaction
» Updates are sent back to the server only when the file is closed

m Computer Science CS677: Distributed OS Lecture 19, page 20
UMASS

Transactional Semantics

File-associated data Read? Modified?
File identifier Yes No
Access rights Yes No

Last modification time Yes Yes

File length Yes Yes

File contents Yes Yes

* Network partition: part of network isolated from rest

— Allow conflicting operations on replicas across file partitions

Reconcile upon reconnection
— Transactional semantics => operations must be serializable

 Ensure that operations were serializable after thay have executed
Conflict => force manual reconciliation

m Computer Science CS677: Distributed OS Lecture 19, page 21
UMASS

Client Caching

Session S, Session S,

Client A

Open(RD) Close Close
Open(RD
Invalidate pen(RD)
Server File f (callback break) File f
File f OK (no file transfer)
Open(WR)
Close
Client B — T Time —»
Session Sg Session S

* Cache consistency maintained using callbacks
— Server tracks all clients that have a copy of the file [provide callback promise]
— Upon modification: send invalidate to clients

m Computer Science CS677: Distributed OS Lecture 19, page 22
UMASS

Server Replication

Server Server
Sy — S,

Client Broken Client
A Server network B

82 [

-

« Use replicated writes: read-once write-all

— Writes are sent to all AVSG (all accessible replicas)
* How to handle network partitions?
— Use optimistic strategy for replication
— Detect conflicts using a Coda version vector
— Example: [2,2,1] and [1,1,2] is a conflict => manual reconciliation

m Compufer Science CS677: Distributed OS Lecture 19, page 23
UMASS

Disconnected Operation

(HOARDING)

Disconnection Reintegration

Disconnection completed
(EMULATION) REINTEGRATION)

Reconnection

* The state-transition diagram of a Coda client with respect to a volume.

* Use hoarding to provide file access during disconnection
— Prefetch all files that may be accessed and cache (hoard) locally
— If AVSG=0, go to emulation mode and reintegrate upon reconnection

m Computer Science CS677: Distributed OS Lecture 19, page 24
UMASS

