
CS677: Distributed OSComputer Science Lecture 19, page 1

Last class: Distributed File

Systems

• Issues in distributed file systems

• Sun’s Network File System case study

CS677: Distributed OSComputer Science Lecture 19, page 2

Today: NFS, Coda

• Case Study: NFS (continued)

• Case Study: Coda File System

CS677: Distributed OSComputer Science Lecture 19, page 3

Semantics of File Sharing
a) On a single processor, when a read

follows a write, the value returned by the

read is the value just written.

b) In a distributed system with caching,

obsolete values may be returned.

CS677: Distributed OSComputer Science Lecture 19, page 4

Semantics of File Sharing

• Four ways of dealing with the shared files in a distributed system.

– NFS implements session semantics

• Can use remote/access model for providing UNIX semantics (expensive)

• Most implementations use local caches for performance and provide session

semantics

All changes occur atomicallyTransaction

No updates are possible; simplifies sharing and replicationImmutable files

No changes are visible to other processes until the file is closedSession semantics

Every operation on a file is instantly visible to all processesUNIX semantics

CommentMethod

CS677: Distributed OSComputer Science Lecture 19, page 5

File Locking in NFS

• NFS supports file locking

• Applications can use locks to ensure consistency

• Locking was not part of NFS until version 3

• NFS v4 supports locking as part of the protocol (see above table)

Renew the lease on a specified lockRenew

Remove a lock from a range of bytesLocku

Test whether a conflicting lock has been grantedLockt

Creates a lock for a range of bytes (non-blocking_Lock

DescriptionOperation

CS677: Distributed OSComputer Science Lecture 19, page 6

File Locking: Share Reservations

• The result of an open operation with share reservations in NFS.

a) When the client requests shared access given the current denial state.

b) When the client requests a denial state given the current file access state.

(b)

FailSucceedFailSucceedREAD

FailFailSucceedSucceedWRITE

FailFailFailSucceedBOTH

BOTHWRITEREADNONE

(a)

 Requested file denial state

FailFailFailSucceedBOTH

FailFailSucceedSucceedWRITE

FailSucceedFailSucceedREAD

BOTHWRITEREADNONE

 Current file denial state

Request

access

Current

access

state

CS677: Distributed OSComputer Science Lecture 19, page 7

Client Caching

• Client-side caching is left to the implementation (NFS does not prohibit it)

– Different implementation use different caching policies

• Sun: allow cache data to be stale for up to 30 seconds

CS677: Distributed OSComputer Science Lecture 19, page 8

Client Caching: Delegation

• NFS V4 supports open delegation

– Server delegates local open and close requests to the NFS client

– Uses a callback mechanism to recall file delegation.

CS677: Distributed OSComputer Science Lecture 19, page 9

RPC Failures

• Three situations for handling retransmissions: use a duplicate request cache

a) The request is still in progress

b) The reply has just been returned

c) The reply has been some time ago, but was lost.

 Use a duplicate-request cache: transaction Ids on RPCs, results cached

CS677: Distributed OSComputer Science Lecture 19, page 10

Security

• The NFS security architecture.

– Simplest case: user ID, group ID authentication only

CS677: Distributed OSComputer Science Lecture 19, page 11

Secure RPCs

• Secure RPC in NFS version 4.

CS677: Distributed OSComputer Science Lecture 19, page 12

Replica Servers

• NFS ver 4 supports replications

• Entire file systems must be replicated

• FS_LOCATION attribute for each file

• Replicated servers: implementation specific

CS677: Distributed OSComputer Science Lecture 19, page 13

Coda

• Coda: descendent of the Andrew file system at CMU

– Andrew designed to serve a large (global community)

• Salient features:

– Support for disconnected operations

• Desirable for mobile users

– Support for a large number of users

CS677: Distributed OSComputer Science Lecture 19, page 14

Overview of Coda

• Centrally administered Vice file servers

• Large number of virtue clients

CS677: Distributed OSComputer Science Lecture 19, page 15

Virtue: Coda Clients

• The internal organization of a Virtue workstation.

– Designed to allow access to files even if server is unavailable

– Uses VFS and appears like a traditional Unix file system

CS677: Distributed OSComputer Science Lecture 19, page 16

Communication in Coda

• Coda uses RPC2: a sophisticated reliable RPC system
– Start a new thread for each request, server periodically informs client it is still

working on the request

• RPC2 supports side-effects: application-specific protocols
– Useful for video streaming [where RPCs are less useful]

• RPC2 also has multicast support

CS677: Distributed OSComputer Science Lecture 19, page 17

Communication: Invalidations

a) Sending an invalidation message one at a time.

b) Sending invalidation messages in parallel.

Can use MultiRPCs [Parallel RPCs] or use Multicast

 - Fully transparent to the caller and callee [looks like normal RPC]

CS677: Distributed OSComputer Science Lecture 19, page 18

Naming

• Clients in Coda have access to a single shared name space

• Files are grouped into volumes [partial subtree in the directory structure]

– Volume is the basic unit of mounting

– Namespace: /afs/filesrv.cs.umass.edu [same namespace on all client; different from NFS]

– Name lookup can cross mount points: support for detecting crossing and automounts

CS677: Distributed OSComputer Science Lecture 19, page 19

File Identifiers

• Each file in Coda belongs to exactly one volume

– Volume may be replicated across several servers

– Multiple logical (replicated) volumes map to the same physical volume

– 96 bit file identifier = 32 bit RVID + 64 bit file handle

CS677: Distributed OSComputer Science Lecture 19, page 20

Sharing Files in Coda

• Transactional behavior for sharing files: similar to share reservations in NFS

– File open: transfer entire file to client machine [similar to delegation]

– Uses session semantics: each session is like a transaction

• Updates are sent back to the server only when the file is closed

CS677: Distributed OSComputer Science Lecture 19, page 21

Transactional Semantics

• Network partition: part of network isolated from rest

– Allow conflicting operations on replicas across file partitions

– Reconcile upon reconnection

– Transactional semantics => operations must be serializable

• Ensure that operations were serializable after thay have executed

– Conflict => force manual reconciliation

YesYesFile contents

YesYesFile length

YesYesLast modification time

NoYesAccess rights

NoYesFile identifier

Modified?Read?File-associated data

CS677: Distributed OSComputer Science Lecture 19, page 22

Client Caching

• Cache consistency maintained using callbacks

– Server tracks all clients that have a copy of the file [provide callback promise]

– Upon modification: send invalidate to clients

CS677: Distributed OSComputer Science Lecture 19, page 23

Server Replication

• Use replicated writes: read-once write-all

– Writes are sent to all AVSG (all accessible replicas)

• How to handle network partitions?

– Use optimistic strategy for replication

– Detect conflicts using a Coda version vector

– Example: [2,2,1] and [1,1,2] is a conflict => manual reconciliation

CS677: Distributed OSComputer Science Lecture 19, page 24

Disconnected Operation

• The state-transition diagram of a Coda client with respect to a volume.

• Use hoarding to provide file access during disconnection

– Prefetch all files that may be accessed and cache (hoard) locally

– If AVSG=0, go to emulation mode and reintegrate upon reconnection

