Last Class: Fault Tolerance

 Basic concepts and failure models

 Failure masking using redundancy

m Computer Science CS677: Distributed OS Lecture 17, page 1
UMASS

Today: More on Fault Tolerance

« Agreement in presence of faults
— Two army problem
— Byzantine generals problem

Reliable communication

Distributed commit
— Two phase commit

— Three phase commit

Failure recovery
— Checkpointing
— Message logging

m Computer Science CS677: Distributed OS Lecture 17, page 2
UMASS

Agreement in Faulty Systems

How should processes agree on results of a computation?

K-fault tolerant: system can survive k faults and yet
function

Assume processes fail silently
— Need (k+1) redundancy to tolerant k faults

Byzantine failures: processes run even if sick
— Produce erroneous, random or malicious replies
* Byzantine failures are most difficult to deal with
— Need ? Redundancy to handle Byzantine faults

m Computer Science CS677: Distributed OS Lecture 17, page 3
UMASS

Byzantine Faults

« Simplified scenario: two perfect processes with unreliable channel
— Need to reach agreement on a 1 bit message
* Two army problem: Two armies waiting to attack
— Each army coordinates with a messenger
— Messenger can be captured by the hostile army
— Can generals reach agreement?

— Property: Two perfect process can never reach agreement in presence of unreliable
channel

* Byzantine generals problem: Can N generals reach agreement with a perfect
channel?

— M generals out of N may be traitors

m Computer Science CS677: Distributed OS Lecture 17, page 4
UMASS

Byzantine Generals Problem

1 Got(1,2,x, 4) 1 Got 2 Got 4 Got
2 Got(1,2,y, 4) (1.2, v4) (1.2, x4y (1,2, x,4)
3 Got(1,2,3,4) (@b, cd) (ef gh) (1.2 v4)
4 Got(1, 2, z, 4) (1.2,z,4) (1.2,z,4) (i} kD)
Faulty process
(@ (b) (c)
. Recursive algorithm by Lamport
. The Byzantine generals problem for 3 loyal generals and 1 traitor.
a) The generals announce their troop strengths (in units of 1 kilosoldiers).

b) The vectors that each general assembles based on (a)

c) The vectors that each general receives in step 3.
m Computer Science CS677: Distributed OS Lecture 17, page 5
UMASS

Byzantine Generals Problem Example

1 Got(1, 2, x) 1 Got 2 Got
2 Got(1.2,y) (1.2y) (1.2, x)
3 Got(1,2,3) (@ b,c) (def)
Faulty process
(a) (b) (c)

* The same as in previous slide, except now with 2 loyal generals and one traitor.

* Property: With m faulty processes, agreement is possible only if 2m+1 processes function
correctly [Lamport 82]

— Need more than two-thirds processes to function correctly

m Computer Science CS677: Distributed OS Lecture 17, page 6
UMASS

Reliable One-One Communication

* Issues were discussed in Lecture 3
— Use reliable transport protocols (TCP) or handle at the application layer
* RPC semantics in the presence of failures
* Possibilities
— Client unable to locate server
— Lost request messages
— Server crashes after receiving request
Lost reply messages
Client crashes after sending request

REQ Server REQ Server REQ Server
P Receive ’ Receive P Receive
Execute Execute
< 7| Reply NeREP | NoREP |
(@) ()] (©
m Computer Science CS677: Distributed OS Lecture 17, page 7
UMASS

Reliable One-Many Communication

Receiver missed
message #24

. . Sender Receiver Receiver \ Receiver Receiver
*Reliable multicast sy | B
buffer Last=24 Last =24
— Lost messages => need tc ==
retransmit -
g eqe,e @
.POSSIbllltleS Sender Receiver Receiver Receiver Receiver
— ACK-based schemes last=25 | |Last=24 | |last=23 | |Last=24
* Sender can become ‘ ‘ ‘ i
ACK 25 IJ Missed 24U ACK 25|J
bottleneck o = = -
()
- NACK-based SChemes Sender receives Receivers suppress their feedback
only one NACK
Sender Receiver / Receiverz Receiver & Receiver
—— T=3 T=4 T=1 T=2
(55 [NACK] [NACK] [NACK] [NACK]
NACK | J\\
1

Network

m Computer Science CS677: Distributed OS Lecture 17, page 8
UMASS

Atomic Multicast

*Atomic multicast: a guarantee that all

process received the message or none at all Relable mu'icast by mtple
. P1 joins the group point-to-point messages P3 crashes P3 rejoins
— Replicated database example | yd /
Y a4 | !
i i /‘ - W | g 4 i /1
P/ AN
Problem: how to handle process crashes? ™ 5T RN RVAY
RPN y Iy N /
ps L | X ﬁ} I
! \\ | ﬁ ! \\\ // // 3 \\\
*Solution: group view Py W BN S 4
. . . "G ={P1P2P3 P4 / tG=PLP2Pay G {PIP2PIPY
— Each message is uniquely associated / .
ith £ Partial multicast Time —»
with a group o1 processes from P3 is discarded
* View of the process group when
message was sent Virtually Synchronous Multicast
* All processes in the group should
have the same view (and agree on
it)
m Computer Science CS677: Distributed OS Lecture 17, page 9
UMASS

Implementing Virtual Synchrony in Isis

Unstable Flush message

4\ Viewchange@ < O

©

(@) (b) (c)
a) Process 4 notices that process 7 has crashed, sends a view change
b) Process 6 sends out all its unstable messages, followed by a flush message
c) Process 6 installs the new view when it has received a flush message from everyone

else

m Computer Science CS677: Distributed OS Lecture 17, page 10
UMASS

Distributed Commit

* Atomic multicast example of a more general problem

— All processes in a group perform an operation or not at all
— Examples:

 Reliable multicast: Operation = delivery of a message
* Distributed transaction: Operation = commit transaction
* Problem of distributed commit
— All or nothing operations in a group of processes
 Possible approaches

— Two phase commit (2PC) [Gray 1978]
— Three phase commit

m Computer Science CS677: Distributed OS Lecture 17, page 11
UMASS

Two Phase Commit

. . coordinator subordinate
*Coordinator process coordinates
the operation \
write ready to
*Involves two phases =T
— Voting phase: processes vote on st e o
whether to commit P B I
— Decision phase: actually commit I e commio
or abort done comi
PR

Vote-request

_ INIT Vote-abort INIT
Commit ™ Vote-request
Vote-request Vote-commit

WAIT READY
Vote-abort Vote-commit Global-abort Global-commit
Global-abort Global-commit ACK ACK
(ABORT | [commiT) (ABORT | (commiT)
(@ {b)

m Computer Science CS677: Distributed OS Lecture 17, page 12
UMASS

Implementing Two-Phase Commit

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {
wait for any incoming vote;
if timeout {
while GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;
exit;
}
record vote;
}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{
write GLOBAL_COMMIT to local log;
multicast GLOBAL_COMMIT to all participants;
}else {
write GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;

}

* Outline of the steps taken by the coordinator in a
two phase commit protocol

m Computer Science CS677: Distributed OS Lecture 17, page 13
UMASS

Implementing 2PC

actions by participant:

write INIT to local log; actions for handling decision requests:
wait for VOTE_REQUEST from coordinator; I*executed by separate thread */
if timeout {
write VOTE_ABORT to local log; while true {
) exit; wait until any incoming DECISION_REQUEST
J . is received; /* remain blocked */
i p;s;g'%%].}éitgéﬁﬁwfgécal log; read most recently recorded STATE from the
send VOTE_COMMIT to coordinator; local log;
wait for DECISION from coordinator; if STATE == GLOBAL_COMMIT
if timeout { send GLOBAL_COMMIT to requesting
multicast DECISION_REQUEST to other participants; participant;
wait until DECISION is received; /* remain blocked */ else if STATE == INIT or STATE ==
write DECISION to local log; GLOBAL ABORT
 ECISION == GLOB AL_COMMIT send GLOBAL_ABORT to requesting
write GLOBAL_COMMIT to local log; participant;
else if DECISION == GLOBAL_ABORT else
write GLOBAL_ABORT to local log; skip; /* participant remains blocked */

}else {

write VOTE_ABORT to local log;
send VOTE ABORT to coordinator;

}
m Computer Science CS677: Distributed OS Lecture 17, page 14
UMASS

Three-Phase Commit

Vote-request

INIT V°te'ab°”/—’u\llT
Commit Vote-request

Vote-request ¥ Vote-commit ¥

READY

Vote-abhort Vote-commit Global-abort Prepare-commit
Global-abort Prepare-commit ACK Ready-commit

ABORT PRECOMMIT PRECOMMIT
Ready-commit Global-commit
y Global-commit y ACK

“COMMIT | “coMMmIT)

(@) (b)

Two phase commit: problem if coordinator crashes (processes block)
Three phase commit: variant of 2PC that avoids blocking

m Computer Science CS677: Distributed OS Lecture 17, page 15
UMASS

Recovery

* Techniques thus far allow failure handling

» Recovery: operations that must be performed after a
failure to recover to a correct state

» Techniques:
— Checkpointing:
* Periodically checkpoint state

 Upon a crash roll back to a previous checkpoint with a
consistent state

m Computer Science CS677: Distributed OS Lecture 17, page 16
UMASS

Independent Checkpointing

In|t|al state Checkpomt
P1

T

Time —»

» Each processes periodically checkpoints independently of other
processes

* Upon a failure, work backwards to locate a consistent cut

« Problem: if most recent checkpoints form inconsistenct cut, will need
to keep rolling back until a consistent cut is found

Cascading rollbacks can lead to a domino effect.

m Computer Science CS677: Distributed OS Lecture 17, page 17

Coordinated Checkpointing

» Take a distributed snapshot [discussed in Lec 11]

» Upon a failure, roll back to the latest snapshot
— All process restart from the latest snapshot

m Computer Science CS677: Distributed OS Lecture 17, page 18
UMASS

Message Logging

* Checkpointing is expensive
— All processes restart from previous consistent cut
— Taking a snapshot is expensive
— Infrequent snapshots => all computations after previous
snapshot will need to be redone [wasteful]
* Combine checkpointing (expensive) with message
logging (cheap)
— Take infrequent checkpoints
— Log all messages between checkpoints to local stable storage
— To recover: simply replay messages from previous checkpoint
» Avoids recomputations from previous checkpoint

m Computer Science CS677: Distributed OS Lecture 17, page 19
UMASS

