
CS677: Distributed OSComputer Science Lecture 16, page 1

Last Class:Consistency Semantics

• Consistency models

– Data-centric consistency models

– Client-centric consistency models

• Eventual Consistency and epidemic protocols

CS677: Distributed OSComputer Science Lecture 16, page 2

Today: More on Consistency

• Consistency protocols

– Primary-based

– Replicated-write

• Putting it all together

– Final thoughts

• Fault-tolerance Introduction

• Project 2

CS677: Distributed OSComputer Science Lecture 16, page 3

Implementation Issues

• Two techniques to implement consistency models

– Primary-based protocols

• Assume a primary replica for each data item

• Primary responsible for coordinating all writes

– Replicated write protocols

• No primary is assumed for a data item

• Writes can take place at any replica

CS677: Distributed OSComputer Science Lecture 16, page 4

Remote-Write Protocols

• Traditionally used in client-server systems

CS677: Distributed OSComputer Science Lecture 16, page 5

Remote-Write Protocols (2)

• Primary-backup protocol

– Allow local reads, sent writes to primary

– Block on write until all replicas are notified

– Implements sequential consistency

CS677: Distributed OSComputer Science Lecture 16, page 6

Local-Write Protocols (1)

• Primary-based local-write protocol in which a single copy is migrated between
processes.

– Limitation: need to track the primary for each data item

CS677: Distributed OSComputer Science Lecture 16, page 7

Local-Write Protocols (2)

• Primary-backup protocol in which the primary migrates to the

process wanting to perform an update

CS677: Distributed OSComputer Science Lecture 16, page 8

Replicated-write Protocols

• Relax the assumption of one primary

– No primary, any replica is allowed to update

– Consistency is more complex to achieve

• Quorum-based protocols

– Use voting to request/acquire permissions from replicas

– Consider a file replicated on N servers

– Update: contact at least (N/2+1) servers and get them to agree

to do update (associate version number with file)

– Read: contact majority of servers and obtain version number

• If majority of servers agree on a version number, read

CS677: Distributed OSComputer Science Lecture 16, page 9

Gifford’s Quorum-Based Protocol

• Three examples of the voting algorithm:

a) A correct choice of read and write set

b) A choice that may lead to write-write conflicts

c) A correct choice, known as ROWA (read one, write all)

CS677: Distributed OSComputer Science Lecture 16, page 10

Final Thoughts

• Replication and caching improve performance in

distributed systems

• Consistency of replicated data is crucial

• Many consistency semantics (models) possible

– Need to pick appropriate model depending on the application

– Example: web caching: weak consistency is OK since humans

are tolerant to stale information (can reload browser)

– Implementation overheads and complexity grows if stronger

guarantees are desired

CS677: Distributed OSComputer Science Lecture 16, page 11

Fault Tolerance

• Single machine systems

– Failures are all or nothing

• OS crash, disk failures

• Distributed systems: multiple independent nodes

– Partial failures are also possible (some nodes fail)

• Question: Can we automatically recover from partial

failures?

– Important issue since probability of failure grows with number

of independent components (nodes) in the systems

– Prob(failure) = Prob(Any one component fails)=1-P(no failure)

CS677: Distributed OSComputer Science Lecture 16, page 12

A Perspective

• Computing systems are not very reliable
– OS crashes frequently (Windows), buggy software, unreliable hardware,

software/hardware incompatibilities

– Until recently: computer users were “tech savvy”

• Could depend on users to reboot, troubleshoot problems

– Growing popularity of Internet/World Wide Web

• “Novice” users

• Need to build more reliable/dependable systems

– Example: what is your TV (or car) broke down every day?

• Users don’t want to “restart” TV or fix it (by opening it up)

• Need to make computing systems more reliable

CS677: Distributed OSComputer Science Lecture 16, page 13

Basic Concepts

• Need to build dependable systems

• Requirements for dependable systems

– Availability: system should be available for use at any given

time

• 99.999 % availability (five 9s) => very small down times

– Reliability: system should run continuously without failure

– Safety: temporary failures should not result in a catastrophic

• Example: computing systems controlling an airplane,

nuclear reactor

– Maintainability: a failed system should be easy to repair

CS677: Distributed OSComputer Science Lecture 16, page 14

Basic Concepts (contd)

• Fault tolerance: system should provide services despite

faults

– Transient faults

– Intermittent faults

– Permanent faults

CS677: Distributed OSComputer Science Lecture 16, page 15

Failure Models

• Different types of failures.

A server may produce arbitrary responses at arbitrary timesArbitrary failure

The server's response is incorrect

The value of the response is wrong

The server deviates from the correct flow of control

Response failure

 Value failure

 State transition failure

A server's response lies outside the specified time intervalTiming failure

A server fails to respond to incoming requests

A server fails to receive incoming messages

A server fails to send messages

Omission failure

 Receive omission

 Send omission

A server halts, but is working correctly until it haltsCrash failure

DescriptionType of failure

CS677: Distributed OSComputer Science Lecture 16, page 16

Failure Masking by Redundancy

• Triple modular redundancy.

CS677: Distributed OSComputer Science Lecture 16, page 17

Project 2

• Online banking using a distributed database

• Database distributed across 3 machines

– Set of accounts split across the three disks

• Replication: each account is also replicated on a second

machine

CS677: Distributed OSComputer Science Lecture 16, page 18

Project 2

• Load balancer/request redirector

– All client requests arrive at this component

– Forwards the request to an “appropriate” server

– Two policies: per-account round-robin, least-loaded

• Distributed locks: Ricart and Agarwala algorithm

– Can use logical clocks or simplify using physical clocks

• Consistency: strict/release, before releasing a lock,

propagate changes to replica

