
CS677: Distributed OSComputer Science Lecture 13, page 1

Last Class: Canonical Problems

• Distributed synchronization and mutual exclusion

• Distributed Transactions

CS677: Distributed OSComputer Science Lecture 13, page 2

Today: Concurrency Control

• Concurrency control

– Two phase locks

– Time stamps

• Intro to Replication and Consistency

• Thoughts on the mid-term

CS677: Distributed OSComputer Science Lecture 13, page 3

Concurrency Control

• Goal: Allow several transactions to be executing

simultaneously such that

– Collection of manipulated data item is left in a consistent state

• Achieve consistency by ensuring data items are accessed

in an specific order

– Final result should be same as if each transaction ran sequentially

• Concurrency control can implemented in a layered fashion

CS677: Distributed OSComputer Science Lecture 13, page 4

Concurrency Control Implementation

• General organization of managers for handling transactions.

CS677: Distributed OSComputer Science Lecture 13, page 5

Distributed Concurrency Control

• General organization of

managers for handling

distributed transactions.

CS677: Distributed OSComputer Science Lecture 13, page 6

Serializability

• Key idea: properly schedule conflicting operations

• Conflict possible if at least one operation is write

– Read-write conflict

– Write-write conflict

BEGIN_TRANSACTION

 x = 0;

 x = x + 3;

END_TRANSACTION

 (c)

BEGIN_TRANSACTION

 x = 0;

 x = x + 2;

END_TRANSACTION

 (b)

BEGIN_TRANSACTION

 x = 0;

 x = x + 1;

END_TRANSACTION

 (a)

Illegalx = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3;Schedule 3

Legalx = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3;Schedule 2

Legalx = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3Schedule 1

CS677: Distributed OSComputer Science Lecture 13, page 7

Optimistic Concurrency Control

• Transaction does what it wants and validates changes prior to
commit

– Check if files/objects have been changed by committed transactions since
they were opened

– Insight: conflicts are rare, so works well most of the time

• Works well with private workspaces

• Advantage:
– Deadlock free

– Maximum parallelism

• Disadvantage:

– Rerun transaction if aborts

– Probability of conflict rises substantially at high loads

• Not used widely

CS677: Distributed OSComputer Science Lecture 13, page 8

Two-phase Locking

• Widely used concurrency control technique

• Scheduler acquires all necessary locks in growing phase,

releases locks in shrinking phase

– Check if operation on data item x conflicts with existing locks

• If so, delay transaction. If not, grant a lock on x

– Never release a lock until data manager finishes operation on x

– One a lock is released, no further locks can be granted

• Problem: deadlock possible

– Example: acquiring two locks in different order

• Distributed 2PL versus centralized 2PL

CS677: Distributed OSComputer Science Lecture 13, page 9

Two-Phase Locking

• Two-phase locking.

CS677: Distributed OSComputer Science Lecture 13, page 10

Strict Two-Phase Locking

• Strict two-phase locking.

CS677: Distributed OSComputer Science Lecture 13, page 11

Timestamp-based Concurrency Control

• Each transaction Ti is given timestamp ts(Ti)

• If Ti wants to do an operation that conflicts with Tj

– Abort Ti if ts(Ti) < ts(Tj)

• When a transaction aborts, it must restart with a new

(larger) time stamp

• Two values for each data item x

– Max-rts(x): max time stamp of a transaction that read x

– Max-wts(x): max time stamp of a transaction that wrote x

CS677: Distributed OSComputer Science Lecture 13, page 12

Reads and Writes using Timestamps

• Readi(x)

– If ts(Ti) < max-wts(x) then Abort Ti

– Else

• Perform Ri(x)

• Max-rts(x) = max(max-rts(x), ts(Ti))

• Writei(x)

– If ts(Ti)<max-rts(x) or ts(Ti)<max-wts(x) then Abort Ti

– Else

• Perform Wi(x)

• Max-wts(x) = ts(Ti)

CS677: Distributed OSComputer Science Lecture 13, page 13

Pessimistic Timestamp Ordering

• Concurrency control using timestamps.

CS677: Distributed OSComputer Science Lecture 13, page 14

Replication

• Data replication: common technique in distributed systems

• Reliability

– If one replica is unavailable or crashes, use another

– Protect against corrupted data

• Performance

– Scale with size of the distributed system (replicated web servers)

– Scale in geographically distributed systems (web proxies)

• Key issue: need to maintain consistency of replicated data

– If one copy is modified, others become inconsistent

CS677: Distributed OSComputer Science Lecture 13, page 15

Object Replication

•Approach 1: application is responsible for replication

– Application needs to handle consistency issues

•Approach 2: system (middleware) handles replication

– Consistency issues are handled by the middleware

– Simplifies application development but makes object-specific solutions harder

CS677: Distributed OSComputer Science Lecture 13, page 16

Replication and Scaling

• Replication and caching used for system scalability

• Multiple copies:

– Improves performance by reducing access latency

– But higher network overheads of maintaining consistency

– Example: object is replicated N times

• Read frequency R, write frequency W

• If R<<W, high consistency overhead and wasted messages

• Consistency maintenance is itself an issue
– What semantics to provide?

– Tight consistency requires globally synchronized clocks!

• Solution: loosen consistency requirements

– Variety of consistency semantics possible

CS677: Distributed OSComputer Science Lecture 13, page 17

Mid-term Exam Comments

• Closed book, closed notes, 90 min

• Lectures 1-13 included on the test

– Focus on things taught in class (lectures, in-class discussions)

– Start with lecture notes, read corresponding sections from text

– Supplementary readings (key concepts) included on the test.

• Exam structure: few short answer questions, mix of

subjective and “design” questions

• Good luck!

