
CS677: Distributed OSComputer Science Lecture 12, page 1

Last Class

• Distributed Snapshots
– Termination detection

• Election algorithms
– Bully

– Ring

CS677: Distributed OSComputer Science Lecture 12, page 2

Today: Still More Canonical Problems

• Distributed synchronization and mutual exclusion

• Distributed transactions



CS677: Distributed OSComputer Science Lecture 12, page 3

Distributed Synchronization

• Distributed system with multiple processes may need to

share data or access shared data structures

– Use critical sections with mutual exclusion

• Single process with multiple threads

– Semaphores, locks, monitors

• How do you do this for multiple processes in a

distributed system?

– Processes may be running on different machines

• Solution: lock mechanism for a distributed environment

– Can be centralized or distributed

CS677: Distributed OSComputer Science Lecture 12, page 4

Centralized Mutual Exclusion

• Assume processes are numbered

• One process is elected coordinator (highest ID process)

• Every process needs to check with coordinator before
entering the critical section

• To obtain exclusive access: send request, await reply

• To release: send release message

• Coordinator:
– Receive request: if available and queue empty, send grant; if

not, queue request

– Receive release: remove next request from queue and send
grant



CS677: Distributed OSComputer Science Lecture 12, page 5

Mutual Exclusion:
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

b) Process 2 then asks permission to enter the same critical region.  The
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when then
replies to 2

CS677: Distributed OSComputer Science Lecture 12, page 6

Properties

• Simulates centralized lock using blocking calls

• Fair: requests are granted the lock in the order they were received

• Simple: three messages per use of a critical section (request, grant,

release)

• Shortcomings:

– Single point of failure

– How do you detect a dead coordinator?

• A process can not distinguish between “lock in use” from a dead

coordinator

– No response from coordinator in either case

– Performance bottleneck in large distributed systems



CS677: Distributed OSComputer Science Lecture 12, page 7

Distributed Algorithm

• [Ricart and Agrawala]: needs 2(n-1) messages

• Based on event ordering and time stamps
– Assumes total ordering of events in the system (Lamport’s clock)

• Process k enters critical section as follows
–  Generate new time stamp TSk = TSk+1

– Send request(k,TSk) all other n-1 processes

– Wait until reply(j)  received from all other processes

– Enter critical section

• Upon receiving a request message, process j
– Sends reply if no contention

– If already in critical section, does not reply, queue request

– If wants to enter, compare TSj with TSk and send reply if TSk<TSj, else
queue

CS677: Distributed OSComputer Science Lecture 12, page 8

A Distributed Algorithm

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, so 2 can now enter the
critical region.



CS677: Distributed OSComputer Science Lecture 12, page 9

Properties

• Fully decentralized

• N points of failure!

• All processes are involved in all decisions

– Any overloaded process can become a bottleneck

CS677: Distributed OSComputer Science Lecture 12, page 10

A Token Ring Algorithm

a) An unordered group of processes on a network.

b) A logical ring constructed in software.

• Use a token to arbitrate access to critical section

• Must wait for token before entering CS

• Pass the token to neighbor once done or if not interested

• Detecting token loss in non-trivial



CS677: Distributed OSComputer Science Lecture 12, page 11

Comparison

• A comparison of three mutual exclusion algorithms.

Lost token, process

crash
0 to n – 11 to !Token ring

Crash of any

process
2 ( n – 1 )2 ( n – 1 )Distributed

Coordinator crash23Centralized

Problems
Delay before entry (in

message times)

Messages per

entry/exit
Algorithm

CS677: Distributed OSComputer Science Lecture 12, page 12

Transactions

•Transactions provide higher level

mechanism for atomicity of

processing in distributed systems

– Have their origins in databases

•Banking example: Three

accounts A:$100, B:$200, C:$300

– Client 1:  transfer $4 from A to B

– Client 2: transfer $3 from C to B

•Result can be inconsistent unless

certain properties are imposed on

the accesses

Write B:$203

Read B: $200

Write B:$204

Read B: $200

Write C:$297

Read C: $300

Write A: $96

Read A: $100

Client 2Client 1



CS677: Distributed OSComputer Science Lecture 12, page 13

ACID Properties

•Atomic: all or nothing

•Consistent: transaction takes

system from one consistent state to

another

•Isolated: Immediate effects are

not visible to other (serializable)

•Durable: Changes are permanent

once transaction completes

(commits) Read B: $204

Write C:$297

Write B:$207

Read C: $300

Write B:$204

Read B: $200

Write A: $96

Read A: $100

Client 2Client 1

CS677: Distributed OSComputer Science Lecture 12, page 14

Transaction Primitives

Example: airline reservation

Begin_transaction

if(reserve(NY,Paris)==full) Abort_transaction

if(reserve(Paris,Athens)==full)Abort_transaction

if(reserve(Athens,Delhi)==full) Abort_transaction

End_transaction

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive



CS677: Distributed OSComputer Science Lecture 12, page 15

Distributed Transactions

a) A nested transaction

b) A distributed transaction

CS677: Distributed OSComputer Science Lecture 12, page 16

Implementation: Private Workspace

• Each transaction get copies of all files, objects

• Can optimize for reads by not making copies

• Can optimize for writes by copying only what is required

• Commit requires making local workspace global



CS677: Distributed OSComputer Science Lecture 12, page 17

Option 2: Write-ahead Logs

• In-place updates: transaction makes changes directly to all files/objects

• Write-ahead log: prior to making change, transaction writes to log on stable

storage

– Transaction ID, block number, original value, new value

• Force logs on commit

• If abort, read log records and undo changes [rollback]

• Log can be used to rerun transaction after failure

• Both workspaces and logs work for distributed transactions

• Commit needs to be atomic [will return to this issue in Ch. 7]

CS677: Distributed OSComputer Science Lecture 12, page 18

Writeahead Log Example

• a) A transaction

• b) – d) The log before each statement is executed

Log

[x = 0 / 1]

[y = 0/2]

[x = 1/4]

    (d)

Log

[x = 0 / 1]

[y = 0/2]

   (c)

Log

[x = 0 / 1]

  (b)

x = 0;

y = 0;

BEGIN_TRANSACTION;

  x = x + 1;

  y = y + 2

  x = y * y;

END_TRANSACTION;

              (a)


