Last Class

* Distributed Snapshots
— Termination detection

* Election algorithms

— Bully

— Ring
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Today: Still More Canonical Problems

* Distributed synchronization and mutual exclusion

* Distributed transactions
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Distributed Synchronization

* Distributed system with multiple processes may need to

share data or access shared data structures

— Use critical sections with mutual exclusion
* Single process with multiple threads

— Semaphores, locks, monitors
* How do you do this for multiple processes in a

distributed system?

— Processes may be running on different machines
* Solution: lock mechanism for a distributed environment

— Can be centralized or distributed
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Centralized Mutual Exclusion

» Assume processes are numbered
* One process is elected coordinator (highest ID process)

* Every process needs to check with coordinator before
entering the critical section

» To obtain exclusive access: send request, await reply
» To release: send release message

e Coordinator:

— Receive request: if available and queue empty, send grant; if
not, queue request

— Receive release: remove next request from queue and send
grant
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Mutual Exclusion:
A Centralized Algorithm

OXONORENONOFORERORONE

Request LT OK Reques% Release /)’K
> No reply
(3) (2 (e
Queue is
] ﬂ empty
Coordinator

(@) (b) (©)
a) Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted
b) Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

c) When process 1 exits the critical region, it tells the coordinator, when then
replies to 2
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Properties

* Simulates centralized lock using blocking calls
 Fair: requests are granted the lock in the order they were received

* Simple: three messages per use of a critical section (request, grant,
release)

* Shortcomings:
— Single point of failure
— How do you detect a dead coordinator?

* A process can not distinguish between “lock in use” from a dead
coordinator
— No response from coordinator in either case

— Performance bottleneck in large distributed systems
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Distributed Algorithm

[Ricart and Agrawala]: needs 2(n-1) messages

* Based on event ordering and time stamps
— Assumes total ordering of events in the system (Lamport’s clock)

Process k enters critical section as follows

— Generate new time stamp 75, = 7S, +/

— Send request(k,TS,) all other n-1 processes

— Wait until reply(j) received from all other processes
Enter critical section

« Upon receiving a request message, process j
— Sends reply if no contention
— If already in critical section, does not reply, queue request

— If wants to enter, compare 7, with 7S, and send reply if 7S, <7S, else
queue
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A Distributed Algorithm

Enters
critical
region
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(@) (b) (©
a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter the

critical region.
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Properties

 Fully decentralized
N points of failure!

All processes are involved in all decisions

— Any overloaded process can become a bottleneck
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A Token Ring Algorithm

PPPPPPPPPP

(@) (b)

a)  Anunordered group of processes on a network.
b) A logical ring constructed in software.

«  Use a token to arbitrate access to critical section

*  Must wait for token before entering CS

*  Pass the token to neighbor once done or if not interested
Detecting token loss in non-trivial

m Compu‘l’er Science CS677: Distributed OS Lecture 12, page 10



Comparison

Algorithm Messag(_es per Delay befo_re entry (in Problems
entry/exit message times)
Centralized 3 2 Coordinator crash
Distributed 2(n=1) 2(n=1) Crash of any
process
Token ring 1to Oton-1 Lost token, process
crash

* A comparison of three mutual exclusion algorithms.
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CS677: Distributed OS

Transactions

*Transactions provide higher level

mechanism for atomicity of

processing in distributed systems
— Have their origins in databases

*Banking example: Three

accounts A:$100, B:$200, C:$300
— Client 1: transfer $4 from A to B
— Client 2: transfer $3 from C to B

*Result can be inconsistent unless
certain properties are imposed on
the accesses
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Client 1

Client 2

Read A: $100

Write A: $96

Read C: $300

Write C:$297

Read B: $200

Read B: $200

Write B:$203

Write B:$204

CS677: Distributed OS
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ACID Properties

*Atomic: all or nothing Client 1 Client 2
*Consistent: transaction takes Read A: $100
system from one consistent state to | write A: $96
h
another Read B: $200

*[solated: Immediate effects are

not visible to other (serializable) Write B:$204

*Durable: Changes are permanent Read C: $300
once transaction completes Write C:$297
(commits) Read B: $204

Write B:$207
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Transaction Primitives

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Example: airline reservation

Begin_transaction
if(reserve(NY,Paris)==full) Abort_transaction
if(reserve(Paris,Athens)==full)Abort_transaction
if(reserve(Athens,Delhi)==full) Abort_transaction

End_transaction

m Compu'l'er Science CS677: Distributed OS Lecture 12, page 14
UMASS



Distributed Transactions

| Nested transaction I | Distributed transaction |

ISubtransac’tionI ‘Subtransactionl

.

Airline database Hotel database

ISubtransac’cionI ‘Subtransactionl

Distributed database

Two different (independent) Two physically separated
databases parts of the same database

(@) (b)
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Implementation: Private Workspace

Each transaction get copies of all files, objects

Can optimize for reads by not making copies

Can optimize for writes by copying only what is required

Commit requires making local workspace global

Private

workspace
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Option 2: Write-ahead Logs

* In-place updates: transaction makes changes directly to all files/objects

*  Write-ahead log: prior to making change, transaction writes to log on stable
Storage

— Transaction ID, block number, original value, new value
* Force logs on commit
« If abort, read log records and undo changes [rollback]
* Log can be used to rerun transaction after failure

* Both workspaces and logs work for distributed transactions
« Commit needs to be atomic [will return to this issue in Ch. 7]
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Writeahead Log Example

x=0; Log Log Log
y=0;

BEGIN_TRANSACTION;

X=x+1,; [x=0/1] [x=0/1] [x=0/1]
y=y+2 ly=0/2] [y =0/2]
X=y"y; [x=1/4]

END_TRANSACTION;
(a) (b) (c) (d)

* a) A transaction
* b)—d) The log before each statement is executed
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