
CS677: Distributed OSComputer Science Lecture 11, page 1

Last Class: Clock Synchronization

• Logical clocks

• Vector clocks

• Global state

CS677: Distributed OSComputer Science Lecture 11, page 2

Today: More Canonical Problems

• Distributed snapshot and termination detection

• Election algorithms

– Bully algorithm

– Ring algorithm



CS677: Distributed OSComputer Science Lecture 11, page 3

Global State

• Global state of a distributed system

– Local state of each process

– Messages sent but not received (state of the queues)

• Many applications need to know the state of the system

– Failure recovery, distributed deadlock detection

• Problem: how can you figure out the state of a

distributed system?

– Each process is independent

– No global clock or synchronization

• Distributed snapshot: a consistent global state

CS677: Distributed OSComputer Science Lecture 11, page 4

Distributed Snapshot Algorithm

• Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

• Any process can initiate the algorithm

– Checkpoint local state

– Send marker on every outgoing channel

• On receiving a marker

– Checkpoint state if first marker and send marker on outgoing
channels, save messages on all other channels until:

– Subsequent marker on a channel: stop saving state for that
channel



CS677: Distributed OSComputer Science Lecture 11, page 5

Distributed Snapshot

• A process finishes when

– It receives a marker on each incoming channel and processes

them all

– State: local state plus state of all channels

– Send state to initiator

• Any process can initiate snapshot

– Multiple snapshots may be in progress

• Each is separate, and each is distinguished by tagging the

marker with the initiator ID (and sequence number)

A

C

BM

M

CS677: Distributed OSComputer Science Lecture 11, page 6

Snapshot Algorithm Example

a) Organization of a process and channels for a distributed

snapshot



CS677: Distributed OSComputer Science Lecture 11, page 7

Snapshot Algorithm Example

b) Process Q receives a marker for the first time and records its local
state

c) Q records all incoming message

d) Q receives a marker for its incoming channel and finishes recording
the state of the incoming channel

CS677: Distributed OSComputer Science Lecture 11, page 8

Termination Detection

• Detecting the end of a distributed computation

• Notation: let sender be predecessor, receiver be successor

• Two types of markers: Done and Continue

• After finishing its part of the snapshot, process Q sends a Done or
a Continue to its predecessor

• Send a Done only when

– All of Q’s successors send a Done

– Q has not received any message since it check-pointed its local state and
received a marker on all incoming channels

– Else send a Continue

• Computation has terminated if the initiator receives Done
messages from everyone



CS677: Distributed OSComputer Science Lecture 11, page 9

Election Algorithms

• Many distributed algorithms need one process to act as

coordinator

– Doesn’t matter which process does the job, just need to pick one

• Election algorithms: technique to pick a unique

coordinator (aka leader election)

• Examples: take over the role of a failed process, pick a

master in Berkeley clock synchronization algorithm

• Types of election algorithms: Bully and Ring algorithms

CS677: Distributed OSComputer Science Lecture 11, page 10

Bully Algorithm

• Each process has a unique numerical ID

• Processes know the Ids and address of every other process

• Communication is assumed reliable

• Key Idea: select process with highest ID

• Process initiates election if it just recovered from failure or
if coordinator failed

• 3 message types: election, OK, I won

• Several processes can initiate an election simultaneously

– Need consistent result

• O(n2) messages required with n processes



CS677: Distributed OSComputer Science Lecture 11, page 11

Bully Algorithm Details

• Any process P can initiate an election

• P sends Election messages to all process with higher Ids
and awaits OK messages

• If no OK messages, P becomes coordinator and sends I
won messages to all process with lower Ids

• If it receives an OK, it drops out and waits for an I won

• If a process receives an Election msg, it returns an OK and
starts an election

• If a process receives a I won, it treats sender an
coordinator

CS677: Distributed OSComputer Science Lecture 11, page 12

Bully Algorithm Example

• The bully election algorithm

• Process 4 holds an election

• Process 5 and 6 respond, telling 4 to stop

• Now 5 and 6 each hold an election



CS677: Distributed OSComputer Science Lecture 11, page 13

Bully Algorithm Example

d) Process 6 tells 5 to stop

e) Process 6 wins and tells everyone

CS677: Distributed OSComputer Science Lecture 11, page 14

Ring-based Election

• Processes have unique Ids and arranged in a logical ring

• Each process knows its neighbors

– Select process with highest ID

• Begin election if just recovered or coordinator has failed

• Send Election to closest downstream node that is alive

– Sequentially poll each successor until a live node is found

• Each process tags its ID on the message

• Initiator picks node with highest ID and sends a coordinator message

• Multiple elections can be in progress

– Wastes network bandwidth but does no harm



CS677: Distributed OSComputer Science Lecture 11, page 15

A Ring Algorithm

• Election algorithm using a ring.

CS677: Distributed OSComputer Science Lecture 11, page 16

Comparison

• Assume n processes and one election in progress

• Bully algorithm

– Worst case: initiator is node with lowest ID

• Triggers n-2 elections at higher ranked nodes: O(n2) msgs

– Best case: immediate election: n-2 messages

• Ring

– 2 (n-1) messages always


