Last Class: Clock Synchronization

- Physical clocks
- Clock synchronization algorithms
 - Cristian's algorithm
 - Berkeley algorithm

CS677: Distributed OS

Lecture 10, page 1

Today: More Canonical Problems

- Logical clocks
- Causality
 - Vector timestamps
- Global state and termination detection

Logical Clocks

- For many problems, internal consistency of clocks is important
 - Absolute time is less important
 - Use logical clocks
- Key idea:
 - Clock synchronization need not be absolute
 - If two machines do not interact, no need to synchronize them
 - More importantly, processes need to agree on the *order* in which events occur rather than the *time* at which they occurred

CS677: Distributed OS

Lecture 10, page 3

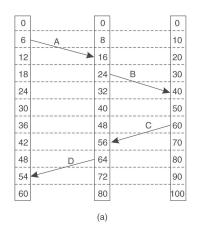
Event Ordering

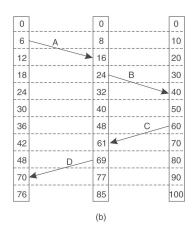
- *Problem:* define a total ordering of all events that occur in a system
- Events in a single processor machine are totally ordered
- In a distributed system:
 - No global clock, local clocks may be unsynchronized
 - Can not order events on different machines using local times
- Key idea [Lamport]
 - Processes exchange messages
 - Message must be sent before received
 - Send/receive used to order events (and synchronize clocks)

Happened Before Relation

- If A and B are events in the same process and A executed before B, then A -> B
- If A represents sending of a message and B is the receipt of this message, then A -> B
- Relation is transitive:
 - A -> B and B -> C => A -> C
- Relation is undefined across processes that do not exhange messages
 - Partial ordering on events

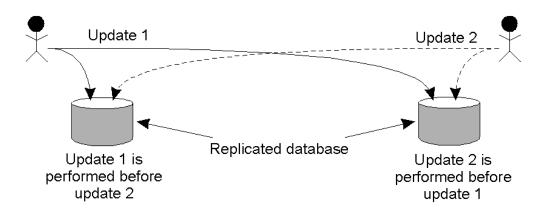
CS677: Distributed OS


Lecture 10, page 5


Event Ordering Using HB

- Goal: define the notion of time of an event such that
 - If A-> B then C(A) < C(B)
 - If A and B are concurrent, then C(A) < = or > C(B)
- Solution:
 - Each processor maintains a logical clock LC_i
 - Whenever an event occurs locally at I, $LC_i = LC_i+1$
 - When i sends message to j, piggyback Lc_i
 - When j receives message from i
 - If $LC_i < LC_i$ then $LC_i = LC_i + 1$ else do nothing
 - Claim: this algorithm meets the above goals

Lamport's Logical Clocks



CS677: Distributed OS

Lecture 10, page 7

Example: Totally-Ordered Multicasting

Causality

- Lamport's logical clocks
 - If $A \rightarrow B$ then C(A) < C(B)
 - Reverse is not true!!
 - Nothing can be said about events by comparing time-stamps!
 - If C(A) < C(B), then ??
- Need to maintain causality
 - If a -> b then a is casually related to b
 - Causal delivery: If $send(m) \rightarrow send(n) \Rightarrow deliver(m) \rightarrow deliver(n)$
 - Capture causal relationships between groups of processes
 - Need a time-stamping mechanism such that:
 - If T(A) < T(B) then A should have causally preceded B

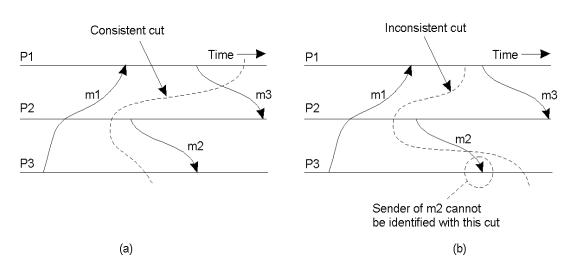
CS677: Distributed OS

Lecture 10, page 9

Vector Clocks

- Each process *i* maintains a vector V_i
 - $-V_i[i]$: number of events that have occurred at i
 - $-V_{i}[j]$: number of events I knows have occurred at process j
- Update vector clocks as follows
 - Local event: increment V_i[I]
 - Send a message :piggyback entire vector V
 - Receipt of a message: $V_i[k] = \max(V_i[k], V_i[k])$
 - Receiver is told about how many events the sender knows occurred at another process k
 - Also $V_i[i] = V_i[i] + I$
- Exercise: prove that if V(A) < V(B), then A causally precedes B and the other way around.

Global State


- Global state of a distributed system
 - Local state of each process
 - Messages sent but not received (state of the queues)
- Many applications need to know the state of the system
 - Failure recovery, distributed deadlock detection
- Problem: how can you figure out the state of a distributed system?
 - Each process is independent
 - No global clock or synchronization
- Distributed snapshot: a consistent global state

CS677: Distributed OS

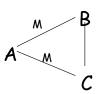
Lecture 10, page 11

Global State (1)

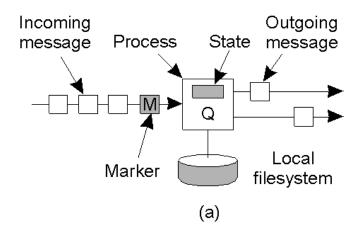
- a) A consistent cut
- b) An inconsistent cut

Distributed Snapshot Algorithm

- Assume each process communicates with another process using unidirectional point-to-point channels (e.g, TCP connections)
- Any process can initiate the algorithm
 - Checkpoint local state
 - Send marker on every outgoing channel
- On receiving a marker
 - Checkpoint state if first marker and send marker on outgoing channels, save messages on all other channels until:
 - Subsequent marker on a channel: stop saving state for that channel



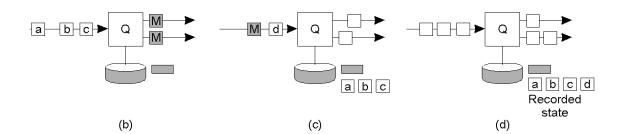
CS677: Distributed OS


Lecture 10, page 13

Distributed Snapshot

- A process finishes when
 - It receives a marker on each incoming channel and processes them all
 - State: local state plus state of all channels
 - Send state to initiator
- Any process can initiate snapshot
 - Multiple snapshots may be in progress
 - Each is separate, and each is distinguished by tagging the marker with the initiator ID (and sequence number)

Snapshot Algorithm Example


a) Organization of a process and channels for a distributed snapshot

CS677: Distributed OS

Lecture 10, page 15

Snapshot Algorithm Example

- b) Process Q receives a marker for the first time and records its local state
- c) Q records all incoming message
- Q receives a marker for its incoming channel and finishes recording the state of the incoming channel

