Code and Process Migration

Motivation

How does migration occur?

Resource migration

Agent-based system

Details of process migration

m Computer Science CS677: Distributed OS Lecture 8, page 1
UMASS

Motivation

+ Key reasons: performance and flexibility

* Process migration (aka strong mobility)

— Improved system-wide performance — better utilization of
system-wide resources

— Examples: Condor, DQS

* Code migration (aka weak mobility)

— Shipment of server code to client — filling forms (reduce
communication, no need to pre-link stubs with client)

— Ship parts of client application to server instead of data from
server to client (e.g., databases)

— Improve parallelism — agent-based web searches

m Computer Science CS677: Distributed OS Lecture 8, page 2
UMASS

Motivation

- Flexibility
— Dynamic configuration of distributed system
— Clients don’t need preinstalled software — download on demand

2. Client and server

. communicate
Client

ENE
I

-

1. Client fetches code
Service-specific
client-side code

Code repository

m Computer Science CS677: Distributed OS Lecture 8, page 3
UMASS

Migration models

Process = code seg + resource seg + execution seg
Weak versus strong mobility

— Weak => transferred program starts from initial state
Sender-initiated versus receiver-initiated
Sender-initiated (code is with sender)

— Client sending a query to database server
— Client should be pre-registered

Receiver-initiated

— Java applets
— Receiver can be anonymous

m Computer Science CS677: Distributed OS Lecture 8, page 4
UMASS

Who executes migrated entity?

* Code migration:

— Execute in a separate process

— [Applets] Execute in target process
* Process migration

— Remote cloning

— Migrate the process

m Computer Science CS677: Distributed OS Lecture 8, page 5
UMASS

Models for Code Migration

Execute at
Sender-initiated " target process
mobility . Execute in

N separate process
eaxK mobility Execute at
Receiver-initiated " target process
. mobility "~ Execute in

separate process
Mobility mechanism

Migrate process
Sender-initiated / g P

mobility
i Clone process
Strong mobility

Migrate process
\ Receiver-initiated g P

mobility
Clone process

m Computer Science CS677: Distributed OS Lecture 8, page 6
UMASS

Do Resources Migrate?

* Depends on resource to process binding
— By identifier: specific web site, ftp server
— By value: Java libraries
— By type: printers, local devices

* Depends on type of “attachments”
— Unattached to any node: data files
— Fastened resources (can be moved only at high cost)
* Database, web sites
— Fixed resources

* Local devices, communication end points

m Computer Science CS677: Distributed OS Lecture 8, page 7
UMASS

Resource Migration Actions

Resource-to machine binding

Unattached Fastened Fixed
Process-to- | By identifier MV (or GR) GR (or MV) GR
resource | By value CP (or MV, GR) GR (or CP) GR
binding | By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

« Actions to be taken with respect to the references to local resources
when migrating code to another machine.

* GR: establish global system-wide reference

* MV: move the resources

* CP: copy the resource

* RB: rebind process to locally available resource

m Computer Science CS677: Distributed OS Lecture 8, page 8
UMASS

Migration in Heterogeneous Systems

« Systems can be heterogeneous (different architecture, OS)
— Support only weak mobility: recompile code, no run time information

— Strong mobility: recompile code segment, transfer execution segment
[migration stack]

— Virtual machines - interpret source (scripts) or intermediate code [Java]

Push marshalled
Local stack procedure call onto
migration stack

operations B
/— T { / / Local
Procedure B N » variables B
S T) Return label
N ~

- Y . < (Gump) to A
Call from / Local Parameter
AtoB / variables B \ values for B
Identification
Return addr.
/////;_/i’ from B \ for proc. B
v \ Local
Push procedure f;?e:i;errB variables A
call onto program Return label
\\ stack Local stack to caller A
. operations A Parameter
e Local values for A
variables A -
Procedure A Identification
Return addr. for proc. A
from A
Migration
Program stack
stack (marshalled
data only)
EA Compu'l'er Science CS677: Distributed OS Lecture 8, page 9
UMASS

Case study: Agents

» Software agents

— Autonomous process capable of reacting to, and initiating
changes in its environment, possibly in collaboration

— More than a “process” — can act on its own
* Mobile agent

— Capability to move between machines

— Needs support for strong mobility

— Example: D’ Agents (aka Agent TCL)

 Support for heterogeneous systems, uses interpreted
languages

m Computer Science CS677: Distributed OS Lecture 8, page 10
UMASS

Case Study: ISOS

* Internet scale operating system
— Harness compute cycles of thousands of PCs on the Internet
— PCs owned by different individuals
— Donate CPU cycles/storage when not in use (pool resouces)
— Contact coordinator for work
— Coodinator: partition large parallel app into small tasks
— Assign compute/storage tasks to PCs

» Examples: Seti@home, P2P backups

m Computer Science CS677: Distributed OS Lecture 8, page 11
UMASS

Case study: Condor

* Condor: use idle cycles on workstations in a LAN

» Used to run lareg batch jobs, long simulations

* Idle machines contact condor for work

* Condor assigns a waiting job

 User returns to workstation => suspend job, migrate

* Flexible job scheduling policies

m Computer Science CS677: Distributed OS Lecture 8, page 12
UMASS

New Topic: Naming

* Names are used to share resources, uniquely identify
entities and refer to locations

* Need to map from name to the entity it refers to

— E.g., Browser access to www.cnn.com

— Use name resolution

 Differences in naming in distributed and non-distributed
systems

— Distributed systems: naming systems is itself distributed

 How to name mobile entities?

m Computer Science CS677: Distributed OS Lecture 8, page 13
UMASS

Example: File Names

» Hierarchical directory structure (DAQG)

— Each file name is a unique path in the DAG

— Resolution of /home/steen/mbox a traversal of the DAG
* File names are human-friendly

Data stored in n1

n2: "elke"
n3: "max" "/keys"
nd: "steen "fhome/steen/keys"

Leaf node O

wmre mbox
Directory node D - -

U U "/home/steen/mbox"

m Compu‘rer Science CS677: Distributed OS Lecture 8, page 14
UMASS

Resolving File Names across Machines

* Remote files are accessed using a node name, path name
* NFS mount protocol: map a remote node onto local DAG

— Remote files are accessed using local names! (location independence)

— OS maintains a mount table with the mappings

Name server Name server for foreign name space
Machine A Machine B

<
remote/q:eyS home R
@)
\ ("nfs: //fllts.cs.vu.nI//home/steen"] \steen
O OLr O O [er
mbox\;

Network

Reference to foreign name space
m Computer Science CS677: Distributed OS Lecture 8, page 15
UMASS

Name Space Distribution

* Naming in large distributed systems
— System may be global in scope (e.g., Internet, WWW)
« Name space is organized hierarchically
— Single root node (like naming files)
* Name space is distributed and has three logical layers
— Global layer: highest level nodes (root and a few children)
» Represent groups of organizations, rare changes
— Administrational layer: nodes managed by a single organization
* Typically one node per department, infrequent changes
— Managerial layer: actual nodes
* Frequent changes
— Zone: part of the name space managed by a separate name server

m Computer Science CS677: Distributed OS Lecture 8, page 16
UMASS

Name Space Distribution Example

Global
layer

Admini-
strational
layer

Mana-
gerial
layer

* An example partitioning of the DNS name space, including
Internet-accessible files, into three layers.

m Computer Science
UMASS

CS677: Distributed OS

Lecture 8, page 17

Name Space Distribution

Item Global Administrational Managerial
Geographical scale of network Worldwide Organization Department
Total number of nodes Few Many Vast numbers
Responsiveness to lookups Seconds Milliseconds Immediate
Update propagation Lazy Immediate Immediate
Number of replicas Many None or few None

Is client-side caching applied? Yes Yes Sometimes

* A comparison between name servers for implementing nodes from a large-scale name
space partitioned into a global layer, as an administrational layer, and a managerial layer.

* The more stable a layer, the longer are the lookups valid (and can be cached longer)

m Computer Science
UMASS

CS677: Distributed OS

Lecture 8, page 18

Implementing Name Resolution

e [terative name resolution
— Start with the root

— Each layer resolves as much as it can and returns address of next name server

1. <nlvu,cs,ftp> Root

name server

. #<nl>, <vu,cs,ftp>

Name server

2
3. <vu,cs,ftp>
4

) < nl node
Client's . #H<vu>, <cs fip>
name
resolver 5. =<cs, ftp> »| Name server
i vu node

- 6. #<cs>, <ftp>

7_<ftp>—> Name server

48. #<ftp> cs node
<nl,vu,cs ftp> T ¢#<nl,vu,cs,f'tp> Nodes are /Y ftp
managed by O Q

the same server -7 :

m Computer Science CS677: Distributed OS Lecture 8, page 19
UMASS

Recursive Name Resolution

* Recursive name resolution
— Start at the root

— Each layer resolves as much as it can and hands the rest to the next layer

1. <nlvu,cs, ftp>

< Root
8 #<n|,vu,cs,ftp>/' name server DQ. <vu,cs, ftp>

7. #<vulcsﬁp>k Name server
W

Client's nl node 3. <cs ftp>
name
resolver 6. #<cs, fip> Name server
> vUu node >4. <ftp=
5. #<ftp> Name server
cs node

<nlvu,cs,ftp> T ¢#<nl,vu,cs,ftp>

m Computer Science CS677: Distributed OS Lecture 8, page 20
UMASS

Project 1

* [llustrate distributed systems principles using an online
bank

* Bank server: account information for various customers

* ATMs and online banking
— Used to withdraw and deposit money
— Pay bills, cash withdrawals

m Compu‘l‘er' Science CS677: Distributed OS Lecture 8, page 21
UMASS

Online Bank

user?

/ ATM1

ATM2

v

Online billing

m CompuTer' Science CS677: Distributed OS Lecture 8, page 22
UMASS

Project 1 details

» Bank server should be multi-threaded to service arbitrary
number of online users and ATMs
— Bank sever, users, ATMs can reside on different machines

 Sever should employ synchronization

— Server may process data from multiple entities accessing the
same account

— Example: deposit $100, add $1 interest, withdraw $50 for
online bill payment etc.

m Computer Science CS677: Distributed OS Lecture 8, page 23
UMASS

