
CS677: Distributed OSComputer Science Lecture 2, page 1

Last Class: Introduction

• Distributed Systems

– A collection of independent computers that appears to its users

as a single coherent system

• Hardware concepts

– Multiprocessors, multi-computers

• Beyond uniprocessor operating systems

– Distributed OS

– Network OS

– Middleware OS

– Complementary properties

CS677: Distributed OSComputer Science Lecture 2, page 2

Communication in Distributed Systems

• Issues in communication (today)

• Message-oriented Communication

• Remote Procedure Calls

– Transparency but poor for passing references

• Remote Method Invocation

– RMIs are essentially RPCs but specific to remote objects

– System wide references passed as parameters

• Stream-oriented Communication

CS677: Distributed OSComputer Science Lecture 2, page 3

Communication Between Processes

• Unstructured communication

– Use shared memory or shared data structures

• Structured communication

– Use explicit messages (IPCs)

• Distributed Systems: both need low-level

communication support (why?)

CS677: Distributed OSComputer Science Lecture 2, page 4

Communication Protocols

• Protocols are agreements/rules on communication

• Protocols could be connection-oriented or connectionless

2-1

CS677: Distributed OSComputer Science Lecture 2, page 5

Layered Protocols

• A typical message as it appears on the network.

2-2

CS677: Distributed OSComputer Science Lecture 2, page 6

Client-Server TCP

a) Normal operation of TCP.

b) Transactional TCP.

2-4

CS677: Distributed OSComputer Science Lecture 2, page 7

Middleware Protocols

• Middleware: layer that resides between an OS and an application

– May implement general-purpose protocols that warrant their own layers

• Example: distributed commit

2-5

CS677: Distributed OSComputer Science Lecture 2, page 8

Client-Server Communication Model

• Structure: group of servers offering service to clients

• Based on a request/response paradigm

• Techniques:

– Socket, remote procedure calls (RPC), Remote Method

Invocation (RMI)

kernel

client

kernel kernel kernel

file

server

process

server

terminal

server

CS677: Distributed OSComputer Science Lecture 2, page 9

Issues in Client-Server Communication

• Addressing

• Blocking versus non-blocking

• Buffered versus unbuffered

• Reliable versus unreliable

• Server architecture: concurrent versus sequential

• Scalability

CS677: Distributed OSComputer Science Lecture 2, page 10

Addressing Issues

•Question: how is the server

located?

•Hard-wired address

– Machine address and process

address are known a priori

•Broadcast-based

– Server chooses address from a

sparse address space

– Client broadcasts request

– Can cache response for future

•Locate address via name server

user server

user server

user serverNS

CS677: Distributed OSComputer Science Lecture 2, page 11

Blocking versus Non-blocking

• Blocking communication (synchronous)

– Send blocks until message is actually sent

– Receive blocks until message is actually received

• Non-blocking communication (asynchronous)

– Send returns immediately

– Return does not block either

• Examples:

CS677: Distributed OSComputer Science Lecture 2, page 12

Buffering Issues

• Unbuffered communication

– Server must call receive before

client can call send

• Buffered communication

– Client send to a mailbox

– Server receives from a mailbox

user server

user server

CS677: Distributed OSComputer Science Lecture 2, page 13

Reliability

• Unreliable channel

– Need acknowledgements (ACKs)

– Applications handle ACKs

– ACKs for both request and reply

• Reliable channel

– Reply acts as ACK for request

• Reliable communication on
unreliable channels

– Transport protocol handles lost
messages

request

ACK

reply

ACK

U
se

r

S
e
rv

e
r

request

reply

U
se

r

S
e
rv

e
r

CS677: Distributed OSComputer Science Lecture 2, page 14

Server Architecture

• Sequential

– Serve one request at a time

– Can service multiple requests by employing events and

asynchronous communication

• Concurrent

– Server spawns a process or thread to service each request

– Can also use a pre-spawned pool of threads/processes (apache)

• Thus servers could be

– Pure-sequential, event-based, thread-based, process-based

• Discussion: which architecture is most efficient?

CS677: Distributed OSComputer Science Lecture 2, page 15

Scalability

• Question:How can you scale the server capacity?

• Buy bigger machine!

• Replicate

• Distribute data and/or algorithms

• Ship code instead of data

• Cache

CS677: Distributed OSComputer Science Lecture 2, page 16

To Push or Pull ?

• Client-pull architecture

– Clients pull data from servers (by sending requests)

– Example: HTTP

– Pro: stateless servers, failures are each to handle

– Con: limited scalability

• Server-push architecture

– Servers push data to client

– Example: video streaming, stock tickers

– Pro: more scalable, Con: stateful servers, less resilient to failure

• When/how-often to push or pull?

CS677: Distributed OSComputer Science Lecture 2, page 17

Group Communication

• One-to-many communication: useful for distributed

applications

• Issues:

– Group characteristics:

• Static/dynamic, open/closed

– Group addressing

• Multicast, broadcast, application-level multicast (unicast)

– Atomicity

– Message ordering

– Scalability

CS677: Distributed OSComputer Science Lecture 2, page 18

Putting it all together: Email

• User uses mail client to compose a message

• Mail client connects to mail server

• Mail server looks up address to destination mail server

• Mail server sets up a connection and passes the mail to

destination mail server

• Destination stores mail in input buffer (user mailbox)

• Recipient checks mail at a later time

CS677: Distributed OSComputer Science Lecture 2, page 19

Email: Design Considerations

• Structured or unstructured?

• Addressing?

• Blocking/non-blocking?

• Buffered or unbuffered?

• Reliable or unreliable?

• Server architecture

• Scalability

• Push or pull?

• Group communication

