
Proving Liveness Properties
of Concurrent Programs
SUSAN OWlCKI
Stanford University
and
LESLIE LAMPORT
SRI International

A liveness property asserts that program execution eventually reaches some desirable state. While
termination has been studied extensively, many other liveness properties are important for concurrent
programs. A formal proof method, based on temporal logic, for deriving liveness properties is
presented. It allows a rigorous formulation of simple informal arguments. How to reason with temporal
logic and how to use safety (invariance) properties in proving liveness is shown. The method is
illustrated using, first, a simple programming language without synchronization primitives, then one
with semaphores. However, it is applicable to any programming language.

Categories and Subject Descriptors: D.1.3 [P rog ramming Techniques]: Concurrent Programming;
D.2.4 [Software Engineering]: Program Verification; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning .about Programs; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Temporal logic, liveness, fairness, proof of correctness, multipro-
cessing, synchronization

1. INTRODUCTION

This paper presents a method for proving properties of concurrent programs. By
using the word "proving", we are committing ourselves to logical rigor--a method
based upon an unsound logical foundation cannot be said to prove anything.
However, our purpose is to develop a practical method for verifying that programs
do what they are supposed to do, not to develop logical formalism. While we
hope that logicians will find this work interesting, our goal is to define a method
that programmers will find useful.

The first author's work was supported in part by the Defense Advanced Research Project Agency
under contract MDA903-79-C-0680; the second author's work was supported in part by the National
Science Foundation under grant MCS 78-16783.
Authors' addresses: S. Owicki, Computer Systems Laboratory, Stanford Electronics Laboratories,
Department of Electrical Engineering, Stanford University, Stanford, CA 94305; L. Lamport, Com-
puter Science Laboratory, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specLqc
permission.
© 1982 ACM 0164-0925/82/0700:0455 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982, Pages 155-495.

456 S. Owicki and L. Lamport

There is a rather large body of sad experience to indicate that a concurrent
program can withstand very careful scrutiny without revealing its errors. The
only way we can be sure that a concurrent program does what we think it does
is to prove rigorously that it does it. We have found that there are two kinds of
properties one usually wants a concurrent program to satisfy:

--Safety properties, which state that something bad never happens--that is, that
the program never enters an unacceptable state.

--Livenessproperties, which state that something good eventually does happen--
that is, that the program eventually enters a desirable state.

Some familiar safety properties are

Partial correctness: if the program begins with the precondition true, then it
can never terminate with the postcondition false.

Absence of deadlock: the program never enters a state in which no further
progress is possible.

Mutual exclusion: two different processes are never in their critical sections
at the same time.

The only liveness property that has received careful formal treatment is
program termination. However, concurrent programs are capable of many more
sins of omission than just failure to terminate. Indeed, for many concurrent
programs--operating systems are a prime example--termination is known by the
less flattering name of "crashing", and we want to prove that it does not happen.
For such programs other kinds of liveness properties are important, for example:

- -Each request for service will eventually be answered.
u A message will eventually reach its destination.
- -A process will eventually enter its critical section.

A number of methods have been proposed for proving safety properties of
concurrent programs, but formal proof of liveness has received little attention.
For sequential programs, termination is the one liveness property that has been
studied extensively. It is typically proved by using some sort of inductive argu-
ment to show that every loop terminates, allowing us to conclude that the entire
program terminates. In addition, the intermittent assertion method [1, 13] pro-
vides an informal approach to deducing more general liveness properties of
sequential programs.

There has been some work on proving particular liveness properties of concur-
rent programs, such as absence of livelock [8] or the existence of cyclically
recurring states [4]. Perhaps the first formal method for proving general liveness
properties was given by Lamport in [11], where the idea of a proof lattice first
appeared. However, his proofs of even simple liveness properties were unbearably
long and hard to follow. The fundamental innovation of our method is the
combining of Lamport's proof lattices with Pnueli's temporal logic [16]. This
permits rigorous proofs that are easy to understand because they capture our
intuitive understanding of how the program works. Flon and Suzuki [3] also
present a formal proof system for liveness properties, but it is not clear how to
use it in constructing program proofs.
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs 457

Liveness propert ies involve the temporal concept "eventual ly". Th e most
obvious way to formalize this concept is to use predicate calculus formulas
containing a " t ime" variable. This approach was used by Francez and Pnueli [4]
in their proof method for cyclic properties. However, the explicit int roduct ion of
t ime in this way leads to complicated formulas tha t t end to obscure the underlying
ideas. To avoid this, temporal logic was used by Burstall [1] for reasoning about
sequential programs and by Pnueli [15, 16] for concurrent programs.

Tempora l logic is an extension of ordinary logic to include certain kinds of
assertions about the future. The form tha t we u se - - t h e "l inear t ime logic"
described in [10]--has two temporal operators:

[] - - meaning "now and forever";
O - - meaning "now or somet ime in the future".

The following are some examples of temporal assertions using these operators:

x > 0 - - " t he variable x is positive now";
[:](x > 0) - - "x is positive now and forever";
~ (x > 0) - - "x is positive now or will be positive some t ime in the future".

Tempora l logic provides the logical foundat ion for our proof method.
One of the most impor tant concepts in concurrent processing is fairness.

Fairness means tha t every process gets a chance to make progress, regardless of
what o ther processes do. Fairness is guaranteed by a t ruly concurrent system in
which each process is run on its own processor: one process cannot hal t the
physical execution of a process running on a different processor. Mult iprogram-
ming systems, in which a single processor is shared by several processes, may or
may not provide fairness, depending on the scheduling algori thm used for proc-
essor allocation.

In proving safety properties, it does not ma t t e r whether one assumes fairness--
any safety proper ty tha t holds under fair scheduling will also hold under unfair
scheduling. However, many programs satisfy their liveness requi rements only if
the underlying implementat ion guarantees fairness. A methodology tha t cannot
prove these propert ies will be inadequate for dealing with t rue concurrency, so
fairness must be par t of a general me thod for dealing with concurrent programs.
Fairness has proved to be a stumbling block for formal systems. 1 Our temporal
logic approach makes it easy to express fairness propert ies and use them in our
proofs.

The paper is organized as follows. In the next section we present a simple
programming language tha t serves to illustrate the method. We then introduce
temporal logic and describe the proof lattices. Section 4 summarizes the proof of
safety propert ies and their expression in temporal logic. Section 5 presents the
basic axioms tha t define the liveness propert ies of our programming language, as
well as derived inference rules and examples of proofs. Section 6 develops a more
complex example: liveness proofs for a mutual exclusion algorithm. Section 7

' For example, attempts to apply denotational semantics have had to cope with the fact that fairness
introduces discontinuity: the limit of a sequence of fair executions ~, in which a certain process gets
to run (1/n)th of the time is an unfair execution in which the process never runs.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

458 S. Owicki and L. Lamport

illustrates how languages with synchronization primitives can be handled, pre-
senting axioms for semaphore operations and an example of their use. Section 8
concludes with a discussion of what we have and have not done.

2. THE PROGRAMMING LANGUAGE

The programming language used in this paper is a very simple one, containing
only assignment, while, and cobeg in statements; concatenation (sequencing);
and variable declarations at the beginning of the program. These language
features are illustrated by the program of Figure 1, which is otherwise of no
particular interest. Except for the cobegin, the language constructs are familiar
and require no explanation. A cobeg in statement

cobegin S1 m oo. m Sn eoend

causes the statements $1 Sn to be executed concurrently. The Si's are often
called processes . Since variable declarations can only appear at the beginning of
a program, all variables are global to the entire program. In Section 7, we consider
additional synchronizing statements.

Besides the cobegins, the other novel feature of the program of Figure 1 is the
angle brackets. In order to specify a concurrent program, one must state which
actions are atomic. Atomic actions are indivisible and represent the finest grain
of process interleaving. We indicate the atomic actions by enclosing them in angle
brackets. In this paper, we require that each assignment and each test in a whi le
statement be an atomic action. The angle brackets are therefore redundant, but
we use them anyway to remind us of the grain of atomicity that we are assuming.
Nonatomic assignments and tests are considered in [9] and cause no fundamental
difficulty.

The purpose of this paper is to describe a method of proving things about
programs. It is rather important that such a proof method allow one to prove
only things that are true. To make sure that this is the case, one must be able to
determine precisely what is true about the programs written in our language. To
this end, we describe the semantics of the programming language somewhat
informally, but carefully enough so that there should be no ambiguity about the
meaning of programs.

We define the semantics of a program to be the set of all possible executions of
that program. More formally, the semantics of a program is given by a set ~ of
execu t ion sequences . Each element of ~ is a sequence of p r o g r a m states. A
program state s consists of two parts:

- -An assignment of a value to each program variable.
- -A control component r e a d y (s) consisting of a set of atomic actions. (When the

program is being executed, the next action to be performed is chosen from
r e a d y (s).)

One example of a state for the program of Figure 1 is

(x = 1, y = 3 ; r e a d y = { e , g }) .

Here the variables x and y are assigned the values 1 and 3, respectively, and the
control component indicates that there are two possibilities for the next action to

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs 459

integer x , y ;

a : < x : = O > ;

b.' cobegin
c: < y := 0 >;

d.' cobegin
e: < y := 2 * y >

coend
!

g: while < y = 0 > do
coend ;

j : < x := 2 * y >

I f i < y := y + 3>

h: < x := x + 1> od

Fig. 1. A concu r r en t p rogram.

be executed:

- - t h e assignment s ta tement (y := 2 * y) ;
- - t h e (y = 0) test in the w h i l e loop.

To save space, we omit the variable names when writing states, so the above
state is wri t ten (1, 3; {e, g}). Note how we use program labels to describe the
r e a d y componen t - - in particular, how the label a t tached to a w h i l e s ta tement
denotes the test operation.

An execution sequence So, sl in ~ represents a program execution tha t starts
in state So, performs one atomic action to reach state sl, performs another atomic
action to reach state s2, and so on. I t simplifies our notat ion if all the e lements of

are infinite sequences. Therefore, if the program execution terminates, we
repeat the last state indefinitely to get an infinite sequence. This is purely a
notat ional convenience and has no deep significance.

As an example, consider the following execution sequence for the program of
Figure 1. It s tarts with initial values of 2 for x and 7 for y, with control at the
beginning of the program.

s0-- (2, 7; {a});

Sl ~- (0 , 7; (c, g}) ;

s2 = (0, O; {e, f, g}) ;

s3 -- (0, O; (e , f, h }) ;

s 4 = (1,0; {e, f , g)) ;

s5 = (1, 3; {e ,g}) ;

s6 = (1, 6; {g)) ;

s7 = (1, 6; (j }) ;

s s = s 9 = Slo (12, 6; (}) .

The reader should observe the following things about the control component:

- - T h e r e is no explicit "control po in t " at the beginning of a co b eg in . Thus, af ter
execution of s ta tement a, the control component becomes (c, g}.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

460 S. Owicki and L. Lamport

- - T h e fact that one process in a cobeg in has terminated is indicated by the
absence of any action from that process in the r e a d y component. Thus, the
component {e, g} in s~ indicates that the second process of the inner cobeg in
has terminated.

--After execution of the body of a whi le statement, control returns to the
beginning of the statement. There is no control point between the end of the
body and the test, and the r e a d y component does not distinguish the initial
entry point from the "looping" point.

- -Execution terminates when the r e a d y component is empty.

In general, a poss ib le p r o g r a m s ta te is one in which

--All variables are assigned legal values--for example, an integer variable is not
assigned a boolean value.

- - T h e r e a d y component consists of a set of concurrent atomic actions, where two
actions are concurren t if they occur in different processes of some cobeg in
statement.

The second condition means that we exclude r e a d y components like {a, c} for
the program of Figure 1, because the program control structure does not permit
concurrent execution of statements a and c.

The set Z of all possible execution sequences consists of all sequences So, sl,
• .. satisfying the following requirements:

- - V a l i d s ta r t i ng state: So is a possible program state.
- - T r a n s i t i o n : for each i > 0, si is obtained from si-~ by executing one atomic

action in r e a d y (si-1). The only atomic actions in our language are the assign-
ment statement and whi le test, which affect the program state in the obvious
way.

- - F a i r n e s s : if a is an atomic action in r e a d y (s i) , then, for some j > i, sj is
obtained by executing a.

Although in our example we happened to pick a starting state in which control
was at the beginning of the program, this is not necessary. We allow an execution
sequence to start in any possible program state. Thus, the sequence s4, s~ is
also a possible execution sequence for the above program. In fact, for any
program, the set Z has the following tai l c losure property:

if o = So, s l , . . , is in Z, then for all i > 0, o ~i~ is in Z, where a ~i~ = si, si+~, • • •

Tail closure implies that the set of possible computations from a given state is
completely determined by the state itself and not by the history of the compu-
tation in reaching that state• Defining ~ in this way, rather than restricting
ourselves to executions that begin in a distinguished starting state, will prove
convenient when using temporal logic.

Although we speak of "concurrent" programming, we are actually modeling
concurrency by a nondeterministic interleaving of atomic actions from the various
processes. With an appropriate choice of atomic actions, almost any concurrent
system can be accurately modeled this way, in the sense that any safety or
liveness properties proved about the model will be true of the system. For
example, a network of processes that communicate by exchanging messages can
be modeled by using a process to represent the communication medium. This

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs 461

process communicates with the transmitting and receiving processes via shared
variables, and its local variables represent the state of the medium. With this
structure it is easy to model a variety of assumptions about message transmis-
s i o n - f o r example, that the process delivers all messages safely or that it may
nondeterministically lose or modify some of them.

The nondeterministic interleaving in our model of concurrency means that we
make no assumption about the relative speeds of the processes. However, fairness
implies that no processor is infinitely faster than another. This requirement is
met, for example, by an implementation that provides a separate processor to
execute each active process and fair scheduling of concurrent accesses to shared
variables.

The set of execution sequences in our model includes all those that could occur
when the program is executed fairly. In any implementation, the relative speeds
of the processors and the scheduling mechanism would further constrain the
possible execution sequences. However, as long as all execution sequences are a
subset of those in Y., any results proved by the methods in this paper will be true
for that implementation.

3. TEMPORAL LOGIC

Temporal logic provides us with both a language for stating program requirements
and a set of rules for reasoning about them. We now give a precise formulation of
temporal logic in terms of program execution sequences. The version of temporal
logic we use was introduced by Pnueli in [16] and is the "linear time" logic
discussed in [10]. Our exposition here is brief, and we refer the reader to the
above papers for more details.

3.1 Immediate Assertions

Temporal logic assertions are built up from immediate assertions, using the
ordinary logical operators A, V, and - and the temporal operators [] and ~. An
immediate assertion is a boolean-valued function of the program state. It may
refer to program variables or to the control component. We write s ~ P to denote
that the immediate assertion P has the value true for state s. In this case we say
that P holds for s, or that s satisfies P. For example, s m x = 1 means that the
program state s assigns the value 1 to x.

We use three kinds of immediate assertions to refer to the control component:
at A, in A , and after A, where A is an executable program statement. The
immediate assertion at A holds for all states where control is at the beginning of
A. Since the executable statements in our programming language are formed
using assignment, while, and cobeg in statements and concatenation, we can
defme the immediate assertion at A as follows:

s ~ a t A if and only if

IF A is a : (x : = e) T H E N a E r e a d y (s) ;

IF A is a: whi le (B) do C o d T H E N a E ready(s);

IF A is cobeg in B1 | . . . | Bn coend

T H E N (s ~ at BI) and . . . and (s ~ at Bn);

IF A is B ; C T H E N s ~ a t B .

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

462 S. Owicki and L. Lamport

Thus, for the p rogram of Figure 1 we see tha t s ~ a t b if and only if r e a d y (s) =
{c, g}, and s ~ a t d if and only if e and f a r e bo th in r e a d y (s) .

Note tha t the immedia te assert ion at A refers to a specific instance of a
s ta tement . For example, if there were two " (x := x + 1)" s t a t emen t s in the
program, then we could not ~_~te "a t (x := x + 1)" because there would be no
way of knowing which "{ x :-- x + 1)" s t a t emen t it referred to. We use s t a t emen t
labels to refer unambiguous ly to individual s ta tements .

T h e immedia te assert ion in A holds for s ta tes where control is a t the beginning
of A or somewhere inside A. In o ther words, s ~ in A if and only if e i ther s
at A or there is some componen t B of A such tha t s ~ a t B. For example, in the
p rog ram of Figure 1, the following relat ions hold:

in a = a t a;

in g =- a t g v a t h;

in d - a t e v a t f;

in b =- a t c v in d v i n g .

T h e immedia te assert ion af ter A holds for s ta tes where control is immedia te ly
af ter s t a t emen t A. T h e following definition uses an "ou tward recursion" to define
af ter A in t e rms of the p rogram s t a t emen t B tha t immedia te ly contains A.

s ~ a f ter A if and only if

IF A is the entire p rogram T H E N (r e a d y (s) = ~);

IF B is w h i l e (C) d o A o d T H E N s ~ a t B ;

IF B is cobeg in . . . |AII . . , coend

T H E N (s ~ a f ter B) or [(s ~ in B) and not (s ~ in A)];

IF B i s A ; C T H E N s ~ a t C ;

IF B is C ; A T H E N s ~ a f t e r B .

Note tha t being af ter the body of a w h i l e loop is the same as being at the loop
test. Also, being af ter a process A in a c o b e g i n s t a t emen t means ei ther t ha t the
entire c o b e g i n has finished or tha t some of its processes (but not A) are still
being executed.

3.2 Temporal Assertions

Where an immedia te assert ion is a funct ion on p rog ram states, a t empora l
assert ion is a boolean-valued funct ion on execution sequences. We write o ~ P to
denote tha t t empora l assert ion P is t rue for the execution sequence a. For the
remainder of this discussion, we let a denote an a rb i t ra ry execution sequence So,
sl We think of t ime as being composed of an infinite sequence of discrete
instants, where si represents the s ta te of the computa t ion a t t ime i. We refer to
t ime 0 as the present and any t ime greater t han 0 as in the future.

An immedia te assert ion is in te rpre ted as a t empora l assert ion t ha t refers to the
present . More precisely, this means t ha t an immedia te assert ion P (a s t a t e m e n t
abou t p rogram states) is in te rpre ted as a t empora l assert ion (a s t a t e m e n t abou t

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs 463

execution sequences) by the convention

a ~ P if and only if So ~ P.

Tempora l assertions tha t refer to the future as well as the present are obtained
with the temporal operators [] and O. The assertions formed with these operators
always refer to both the present and the future. Th e unary operator [] means "for
all present and future t imes it will be t rue that" , and O means "a t some present
or future t ime it will be t rue that" . Recalling tha t a (i) is the execution sequence
si, si+l we can define these temporal operators formally as follows, where P
denotes any temporal assertion:

a ~ [Np if and only if Vi _ O: o (i) ~ P ;

a ~ O P if and only if 3i _ O: o (i~ ~ P.

Note tha t 0 is the dual of [] - - t h a t is, ~ P =- - D ~ P .
Since temporal assertions are formed from immediate assertions using the

temporal operators [] and 0 and the ordinary logical operations A, V, and - , the
definition of o ~ P for any temporal assertion P is completed as follows:

a ~ (P A Q) if and only if (o ~ P) a n d (o ~ Q) ;

a ~ (P v Q) if and only if (o ~ P) o r (a ~ Q) ;

o ~ (~ P) if and only if it is not the case tha t a ~ P.

In discussing temporal formulas, we often use English phrases like " P holds at
t ime i" instead of the formula o (i) ~ P. Unfortunately, there is no English tense
tha t combines the present and the future in the way tha t the temporal operators
do. To smooth our syntax, we take a l iberty with the English language by using
the future tense in such cases, as in the s ta tement " P will be t rue now or in the
future".

We now consider some examples of temporal logic formulas. As usual, we define
D (logical implication) in terms of V and ~. If P and Q are immedia te assertions,
then the temporal assertion P D []Q means "if P is t rue now, then Q will always
be t rue". More precisely, P D []Q is t rue for an execution sequence if P is false in
the first state or Q is t rue in all states. This type of assertion expresses a basic
safety proper ty and is discussed fur ther in Section 4.

As a second example, consider the formula V](I D [] I) . It means tha t if I ever
becomes true, then it will remain true forever. An immediate assertion I for which
this is t rue is said to be invariant. Invariants play a major role in the proof of
safety properties.

As a final example, consider the assertion [](P D (> Q). I t states tha t if P ever
becomes true, then Q will be t rue at the same t ime or later. Such an assertion
expresses a liveness proper ty and is discussed in Sect ion 5. This part icular formula
is very useful, and we abbreviate it as P ~ Q (pronounced " P leads to Q") :

(P~-, Q) - R(PD <>Q).

(Manna and Waldinger [13] use a similar notation with the following meaning: if
P is true at some time, then Q is true at some time, not necessarily later.)

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

464 S. Owicki and L. Lamport

3.3 Theorems

Our definition of o ~ P says what it means for the assertion P to be true for the
single execution sequence o. However, we are not interested in properties that
hold for some individual execution sequence, but in properties that hold for all of
a program's execution sequences. We say that an assertion P holds for a program
if it holds for all execution sequences of that program-- that is, for all elements of
~. For example, P ~ Q is true for a program if and only if any execution of the
program that reaches a state where P is true must subsequently reach a state
where Q is true. To prove that an assertion holds for a program, we use two kinds
of reasoning:

--Reasoning based upon the semantics of the individual program under consid-
eration.

--Reasoning that is valid for all programs.

The second kind of reasoning is what temporal logic is all about, and it is the
subject of this section. We return to the semantics of programs in subsequent
sections.

Temporal logic incorporates all the laws of reasoning of ordinary logic--that is,
the axioms and rules of inference of the propositional calculus. For example, if we
can prove that the temporal assertions P and P D Q are true for a program, ttien
we can conclude that the assertion Q is true for that program.

We also assume some method of reasoning about immediate assertions. For
example, the rules of integer arithmetic allow us to prove that (x > 1) ~ (x > 0)
for any integer x. It is often possible to prove theorems about program variables
that depend only on the types of values they may take on. Such theorems must
be true of any program state in which the variables have the appropriate type.
Thus (x > 1) D (x > 0) must be true for all states of a program in which x is an
integer variable. Our first law allows us to use these theorems in our temporal
logic reasoning.

TL1. I f the immediate assertion P is true for every program state, then P is
true for the program.

PROOF. This follows immediately from the fact that an immediate assertion is
true for an execution sequence if and only if it is true for the first state of that
sequence. []

Logicians will note that the proofs of this and the remaining laws are actually
proofs of their validity, based upon the semantic definitions given above. Since
our goal is to familiarize the reader with temporal logic as an intuitively mean-
ingful way of reasoning, not to overwhelm him with rigor, our proofs will be quite
informal. We hope the reader will come to feel, as we do, that this kind of
temporal logic reasoning is simple and natural. All our laws can also be proved
using the formal temporal logic system given in [16].

The following law states that a true assertion must always be t rue - - t ru th is
eternal.

TL2. I f the temporal assertion P is true for a program S, then []P is true
for S.
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs • 465

PROOF. Let a be any execution sequence of S. Th e tail closure proper ty implies
tha t for any i, o (i) is also an execution sequence of S. By the hypothesis, this
means tha t o (i) ~ P for all i. I t then follows immediately from the definition of
o ~ [] P tha t [] P is t rue for any execution sequence of S. 0

Note tha t TL2 does not imply tha t the assertion P ~ [] P is t rue for all
programs. This assertion states tha t if P is t rue at the beginning of an execution
sequence, then it is t rue at all points in the execution sequence. TL2 states tha t
if an assertion is t rue at the beginning of all execution sequences, then tha t
assertion must be true throughout all execution sequences.

Connoisseurs of logic will observe tha t TL1 and TL2 are inference rules. Th e
rest of our laws are theorems: temporal assertions tha t are true for every program.
We have not tr ied to give a complete set of theorems for proving propert ies of
programs, merely ones we use in our examples. With a little experience, the
reader will be able to decide easily for himself whether a temporal logic formula
he would like to use as a theorem is really true.

TL3. [] (P D Q) ~ (P ~ Q) .

PROOF. Consider an execution sequence o which satisfies the left-hand side of
TL3. For this execution sequence, whenever P is true, Q is t rue too. Thus,
whenever P is true, Q will be t rue "now or in the future", which means tha t
P ~ * Q . O

TL4. (a) O(P /~ Q) =- ([]P /~ []Q).
(b) ~ (P k/ Q) - (<>P k/ <>Q).

PROOF. To establish TL4(a), we must show that , for any execution se-
quence o,

o ~ C](P/S Q) if and only if o ~ ([3P/~ [3Q).

This is easily verified by expanding the definition of I3:

o ~ D (P A Q) -= Vi _> 0: o ~i~ ~ (P / ~ Q)

- Vi ___ 0: (o ~° ~ P) / ~ (o ~i~ ~ Q)

- (v i ___ o: o "~ m P) / ~ (v i ___ o: o ~i~ ~ Q)

-= (o ~ [3 P) / k (o ~ OQ)

- o ~ ([]P/k[]Q).

TL4(b) follows from TL4(a) using the duality of [] and ~. 0

Note tha t the formula

R (P V Q) - ([]P V [3Q)

is not a theorem. The left-hand side is t rue for an execution sequence if e i ther P
or Q is t rue at all times, while the r ight-hand side is t rue if e i ther P is t rue at all
t imes or Q is t rue at all times. The implication

([]P W [3Q) ~ [] (P W Q)

is a theorem of temporal logic, but we will not use it.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

466 • S Owicki and L Lamport

TL5. ([qP/~ [q(P D Q)) D C]Q.

PROOF. If P and P D Q are true at all times, then Q must be t rue at all
times. 0

TL6. <>P V [3 -P .

PROOF. This is an obvious consequence of the duali ty of [] and <>--that is, <>P
-- ~ R - p . D

T h e o r e m TL6 states tha t in every execution sequence, ei ther P is always false
or there is some t ime at which it is true. This fact is f requent ly used in proofs of
liveness properties: to prove <>P, one first shows tha t Q - P leads to a contradict ion
and then applies TL6.

The next theorem states tha t ~-~ is a transit ive relation.

TL7. ((P ~-~ Q) /~ (Q ~* R)) D (P ~-~ R).

PROOF. Recall tha t U ~ , V holds for an execution sequence a if and only if
whenever U holds at t ime i, there is some t ime j _ i at which V holds. Hence, P
~- Q implies tha t if P is t rue at t ime i, Q is t rue at some t ime j _ i. Likewise, Q
~-, R implies tha t if Q is t rue at t ime j , R is t rue at some t ime k _ j . Together ,
they imply tha t if P is t rue at t ime i, R is t rue at some t ime k >_ i; so P ~ R is
true. 0

TL8. ((P ~-~ R) / ~ (Q ~* R)) D ((P V Q) ~'~ R).

PROOF. This follows immediate ly from the fact tha t if (P V Q) holds at some
time, ei ther P or Q holds at tha t time. 0

TL9. [q(P V Q) D (C]P V <>Q).

PROOF. Consider an execution sequence in which P V Q is always true. If there
is any point at which P is false, Q must be t rue at tha t point. Therefore , e i ther P
is always t rue or there is a point at which Q is true. [3

TL10. [(P /~ [qQ) ~-~ R] D [(P /~ [3Q) ~ , (R/~ DQ)].

PROOF. Consider an execution sequence tha t satisfies the left-hand side of the
implication. If P is t rue at t ime i and Q is t rue from t ime i on, then R must be
t rue at some t ime j _ i. Since Q will still be t rue at t ime j and from then on, this
implies tha t the execution sequence satisfies the r ight-hand side of the implication
as well. 0

3.4 Proof Lattices

Suppose tha t the following three assertions hold for a program:

(1) P ~* (R1 V R2);
(2) R1 ~-~ Q;
(3) R2 ~-~ Q.

Writing the meaning of each of these assertions as follows:

(1) if P is t rue at any t ime i, then R1 or R2 will be t rue at some t i m e j _ i;

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs 467

P

J \
R1 R2 Fig. 2. Lattice proof outline for P ~-. R.

(2) if R1 is t rue at any t ime j, then Q will be t rue at some t ime k >__j;
(3) if R2 is t rue at any time]', then Q will be true at some t ime k _>j,

we easily see tha t they imply the t ru th of P ~-, Q. Formally, this is proved by a
simple application of TL8 and TL7.

This reasoning is conveniently described by the proof lattice of Figure 2. Th e
two arrows leading from P to R1 and R2 denote the assertion P ,¢* (R1 V R2);
the arrow from R1 to Q denotes the assertion R1 ~* Q; and the arrow from R2 to
Q denotes the assertion R2 ~- Q.

In general, we make the following definition:

Definition. A proof lattice for a program is a finite directed acyclic graph in
which each node is labeled with an assertion, such tha t

(1) There is a single entry node having no incoming edges.
(2) There is a single exit node having no outgoing edges.
(3) If a node labeled R has outgoing edges to nodes labeled R1, R 2 , . . . , Rk, then

R ~, (R1 V R2 V " ' " V Rk) holds for the program.

The third condition means that , if R is t rue at some time, then one of the Ri
must be true at some later time. By a generalization of the informal reasoning
used for the lattice of Figure 2, it is easy to see tha t if the ent ry node assertion is
t rue at some time, then the exit node assertion must be true at some later time.
This is s tated and proved formally by the following theorem:

THEOREM. I f there is a proof lattice for a program with entry node labeled P
and exit node labeled Q, then P ~-, Q is true for that program.

PROOF. We prove the following hypothesis, which clearly implies tha t P ~-, Q.

Induction Hypothesis. If r is a node in the lattice with label R, then R ~, Q.

The proof is by induction on the length of the longest pa th from node r to the
exit node. (Since the lattice has only one exit, e i ther r is the exit or there is a pa th
from r to the exit.) If the longest pa th has length 0, the hypothesis clearly holds,
since then r is the exit node and R = Q.

Now assume tha t the hypothesis holds for nodes whose longest pa th to the exit
has length n _> 0, and consider a node r whose longest pa th to the exit has length
n + 1. Let the nodes reached by outgoing edges from r be labeled R1, R 2 , . . . , Rk.
By definition of a proof lattice, we have

R ~ , (R1 V R2 X/ "'" V RD.

By the induction hypothesis, Ri ~ Q for i = 1 k. Applying TL8 k - i t imes
yields R~ k/ " ' " k/Rk ~-~ Q. It now follows from TL7 tha t R ~-, Q. [3

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

468 • S. Owicki and L. Lamport

Proof lattices in which every node is labeled by an immediate assertion were
introduced in [11]. The significant change introduced in this paper is the use of
more general temporal assertions in the lattices--in particular, assertions involv-
ing the [] operator.

Consider a lattice containing a node labeled R with arcs pointing to nodes
labeled R 1 , . . . , Rk. This construction implies that if R ever becomes true during
execution of the program, one of the Ri must subsequently become true. Now
suppose that R has the form P / k [3Q. Saying that R is true at some time means
that P and Q are true then, and that Q will be true at all future times. In
particular, Q must be true when any of the Ri subsequently become true. Hence,
we could replace each of the Ri by Ri/k r--]Q. More formally, it follows from TL10
that condition (3) in the definition of a proof lattice still holds if each Ri is
replaced by Ri /k r--lQ.

We see from this that if r-]Q appears as a conjunct ("and" term) of an assertion
in a proof lattice, then NQ is likely to appear as a conjunct of the assertions
"lower down" in the lattice. It is therefore convenient to introduce the following
notation, which makes our proof lattices clearer. For any assertion Q, drawing a
box labeled OQ around some of the nodes in the lattice denotes that RQ is to be
conjoined to the assertion attached to every node in the box. This notation is
illustrated by the proof lattice of Figure 3, which is expanded in Figure 4 into the
same proof lattice written without the box notation.

The lattice in Figure 3 also illustrates the typical structure of a proof by
contradiction for P ~, Q. In the first step, the proof is split into two cases based
on the temporal logic theorem

P ~* [Q V (P/k D-Q)] .

This theorem can be proved using TL3, TL6, and TL10. Intuitively, it is true
because starting from a time when P is true, either

• Q will be true at some subsequent time, or
• - Q will be true from then on.

The former possibility is represented by the right-hand branch, the latter by the
left-hand branch. Within the box labeled F3-Q is some argument that leads to a
contradiction, which appears at the node labeled false. Note that false ,,~ Q
follows from TL1-TL3, since false ~ Q is a tautology. Thus, the general pattern
of these proofs by contradiction is to assume that the desired predicate never
becomes true, and then show that this assumption leads to a contradiction. We
will see a number of examples of this type of reasoning in the next two sections.

4. S A F E T Y

In order to prove that "something good eventually happens", one usually has to
show that "nothing bad happens" along the way. In other words, in order to prove
a liveness property, one must usually prove one or more safety properties. A
number of formal methods have been proposed for proving safety properties [7,
9, 11, 14]. They all permit one to prove the same kind of properties, the differences

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs • 469

O-O

P

t ' A O-Q

R

DR

DR

false

Fig. 3. Abbreviated lattice.

Fig. 4. Expanded lattice for Figure 3.

P

p A O - Q

l
R A O - Q

1
DR A r-l~Q

1
S A OR A r"l~Q

1
false

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

470 S. Owicki and L. Lamport

among the methods being largely syntactic. We now describe their basic approach
in terms of temporal logic.

A safety proper ty has the form P D [3Q, where P and Q are immediate
assertions. This assertion means tha t if the program starts with P true, then Q is
always t rue th roughout its execution. (A more general type of safety proper ty is
discussed in the appendix.} The most familiar safety proper ty is partial correct-
ness, which states tha t if the program S begins execution with some precondit ion
P true, and if the execution of S terminates, then it terminates with some
postcondit ion Q true. This is expressed by the temporal logic formula

(at S / k P) D [:](after S D Q).

For most sequential programs, part ial correctness is the only safety proper ty
required. For concurrent programs, a number of interesting safety propert ies
have been considered. As an example, we consider everyone 's favorite multipro-
cess synchronization property: mutual exclusion. Le t S be a program with two
processes, each of which has a critical section. Th e mutual exclusion proper ty for
S states tha t the two processes never execute their critical sections concurrently.
Let t ing CS1 and CS2 be the two critical sections, this p roper ty is expressed as
follows:

at S D [3~(in CSI A in CS2).

The hypothesis at S means tha t the mutual exclusion proper ty has to hold only
for those program execution sequences in which S is s tar ted at the beginning.
(Remember tha t we allow execution sequences beginning in any state, including
one in which both processes are in their critical section. 2 }

To prove an assertion of the form P D DQ, one must find an invariant assertion
/ - - t h a t is, an assertion for which I D [31 is t r ue - - such tha t (i) P D I and (ii) I D
Q. To see tha t this implies P D DQ, we simply observe tha t if the program is
s tar ted with P initially true, then

--(i) implies tha t I is t rue initially;
- - t h e invariance of I then implies tha t I is always true;
--(ii) then implies tha t Q is always true.

The implications (i) and (ii) are proved using ordinary logic. Proving tha t I is an
invariant requires reasoning about the program and is discussed next.

We illustrate this me thod by showing tha t the program of Figure 5 satisfies the
mutual exclusion property, assuming tha t the critical sections do not modifyp~ or
p2. Although it satisfies the mutual exclusion property, this program does not
satisfy any of the other propert ies one generally requires of a mutual exclusion
algorithm. (For example, ra ther few of the possible execution sequences actually
let any process enter its critical section.) However, it does serve as an example.

To prove the mutual exclusion proper ty

at c D [:]~ (in CS1 A in CS2)

2 At this point, the reader may feel that things would be made much simpler by letting execution
sequences always begin in a designated starting state. Both authors did just that in earlier work and
now feel that the current approach is better. We refer the reader to [10] for a discussion of the reasons.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs 471

boolean Pl' Pz ;
c: cobegin

al : <Pl

b 1 : if

!

az : <P2

b z : if
coend

: = t r u e) ;

<~pz> then CS 1 :

: = true> ;

<~pl > then C S z :

c r i t i ca l s ec t i on 1 fi

c r i t i ca l s ec t i on 2 fi

Fig. 5. Oversimplified mutual exclusion program.

we use the following invariant I:

(in b~ D p l) /k (in b2 D p2)/k - (i n CS~ /k in CS2).

The reader can check that at c D I, and I obviously implies the mutual exclusion
property. Thus the mutual exclusion property is proved once we show that I is
invariant.

To prove the invariance of I, one must show that if execution is begun in a
program state s in which I is true, then executing any single atomic action in
ready(s) leaves I true. This is the basic idea underlying all the aforementioned
methods for proving safety properties. We leave it to the reader to verify the
invariance of I and of all the invariants we use in our proofs of liveness properties.

We use the notation introduced by Laraport in [9] for expressing safety
properties. If S is a program statement and P and Q are immediate assertions,
then the formula (P} S (Q) has the following meaning:

If execution begins anywhere in S with P true, then executing the next atomic
action of S yields a new state in which either

- - control is still within S and P is true, or
- - control is after S and Q is true.

Note that (P} S {Q} says nothing about what can happen if an atomic action
not in S--perhaps from another process--is executed.

The method of proving safety properties described in [9] is based upon a logic
for deriving formulas of the form (P} S {Q). This logic does not concern us here.
We merely point out that safety properties are deduced from the fact that if S is
the entire program, then the formula {I) S {I) means that I is invariant. Thus
the logic can be used in proving invariants, as required for our method of proving
simple safety properties. A method for proving more general safety properties,
described briefly in [9], is explained in the appendix.

5. LIVENESS

5.1 The Axioms

In the preceding section, we discussed how one proves safety properties. To prove
liveness properties of programs written in our programming language, we need
only introduce fairness into our formalism. This can be done with a single rule:

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

472 S. Owicki and L. Lamport

atomic actions a lways terminate. This means that if the program reaches a state
s, then any atomic action in ready(s) will eventually be executed. Since there are
two kinds of atomic actions (assignment statements and whi le tests), fairness is
expressed formally by the following two axioms:

ATOMIC ASSIGNMENT AXIOM. For any atomic ass ignment s ta tement S:

at S ,~, af ter S.

while CONTROL FLOW AXIOM. For the s ta temen t w: while (b) do s: S od,

at w ~ (at s V after w).

Given a method for proving safety properties, these two axioms, together with
the laws of temporal logic, enable us to derive all the liveness properties we wish
to prove about programs. In the next two sections we give a number of additional
proof rules for liveness properties, all of which are derived in the appendix from
the liveness axioms and various safety properties. These derivations essentially
combine a safety property "nothing not good ever happens" with the two axioms
which say "something eventually happens" to conclude that "something good
eventually happens".

5.2 Control Flow Rules

The simplest liveness properties are statements about program control flow: if
control is at one point, then it must eventually reach some other point. The two
liveness axioms are of that form, stating that if control is at the beginning of an
atomic operation, then it will eventually be after that operation. We can derive
from them the following additional control flow rules. The validity of these rules
should be obvious, and they are presented here without proof. Formal derivations
of these and our other liveness rules are given in the appendix.

CONCATENATION CONTROL FLOW. For the s ta tement S ; T,

at S ,~ after S, at T ~ , af ter T

at S ,~, af ter T.

cobegin CONTROL FLOW. For the s ta tement c: cobegin S | T coend,

at S ,~ af ter S, at T , ~ after T

at c ,~ af ter c.

SINGLE EXIT RULE. For any s ta tement S:

in S D ([] in S V 0 after S) .

Note that the Single Exit Rule is true only because our programming language
does not have a goto statement. Thus, if control is in S, it can only leave S by
passing through the control point after S.

5.3 More Complex Rules

The above axioms and rules refer only to the control component of the program
state and not to the values of variables. We also need rules that describe the

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs • 473

boolean p ; integer x ;
a: cobegin

b: <p := fah'e>
|

c: ~hile <p> do & <x := x + l >
cocnd

od

Fig. 6. A te rmina t ing concurren t program.

interaction between control flow and the values of program variables, a For
example, consider the program in Figure 6. It consists of two processes: one that
sets the variable p false and another that loops as long as p is true. Since the first
process eventually sets p false and terminates, the second process eventually
terminates. Hence, the entire cobegin terminates. However, its termination
cannot be inferred directly from the above rules, because it depends upon the
interaction between the control flow in the second process and the value of the
variable p set by the first process.

We now state and informally justify several rules for reasoning about the
interaction between control flow and variable values. More formal proofs are
given in the appendix.

First, suppose that the safety property (P} (S) {Q} holds for the atomic
statement (S}. This tells us that if (S) is executed when P is true, then Q will be
true immediately after its execution, when control is right after (S }. The Atomic
Liveness Axiom tells us that if control is at (S}, then (S) will eventually be
executed. We therefore deduce the following rule:

A T O M I C S T A T E M E N T RULE. For any atomic statement (S }:

{P} (S) {Q}, [~(at (S} D P)
at (S) ~, (after {S} A Q).

In the application of this rule, the hypothesis D(at (S) D P) must first be proved
as a safety property, using the techniques of Section 4.

One might be tempted to write a rule stating that, if {P} (S) (Q} holds, then
(at (S) A P) ~-~ (after (S) A Q). However, this would not be valid. Even if at
(S) A P is true at some point in an execution sequence, P may not be true when
(S) is actually executed--another process could execute a statement making P
false before (S) is executed. If this happens, there is no reason why Q should be
true upon completion of (S). Thus the stronger assumption in the Atomic
Statement Rule is necessary.

We next extend the Atomic Statement Rule to nonatomic statements. If {P}
S (Q} is true for some statement S that will eventually terminate, what will
guarantee that Q is true when S terminates? From the meaning of (P} S {Q}, it
is clear that Q will be true upon termination of S if P is true just before the last
atomic step of S is executed. This in turn will be true if P is true throughout the
execution of S. This gives us the following rule:

a In the formal proof of these rules f rom the l iveness axioms, the relat ionship be tween the variable
values and control flow is derived from safety properties, as d iscussed in the appendix.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

474 • S. Owicki and L. Lampor t

G E N E R A L S T A T E M E N T R U L E .

{P} S (Q}, [-](in S D P), in S ~-, after S

in S ,¢* (after S A Q).

Our final two rules involve the atomic test in a whi le statement. Consider the
statement w: whi le (B) do S o d . The whi le Control Flow Axiom tells us that
if control is at w, then it will eventually be at S or after w. We also know that
control will go to S only if B is true, and will leave w only if B is false. (This is a
safety property of the whi le statement.} Combining these observations, we
deduce that if control is at w, then eventually it will be at S with B true, or will
be after S with B false, giving us the following rule:

whi le TEST RULE. For the s ta tement w: whi le (B) do S o d :

at w ,¢* ((at S A B) ~/ (after w A ~B)) .

The whi le Test Rule tells us that control must go one way or the other at a
whi le statement test. If we know that the value of the test expression is fixed for
the rest of an execution sequence, then we can predict which way the test will go.
In particular, we can deduce the following:

whi le EXIT RULE. For the s ta tement w: whi le (B) do S o d :

{at w A [](at w D B)) ~ at S;
(at w A [](at w D ~B)} ~ , af ter w.

5.4 A Trivial Example

We now prove that the example program of Figure 6 terminates-- that is, we
prove at a ~ , after a. The proof is described by the lattice of Figure 7. The
numbers attached to the lattice refer to the comments in the text.

1. This step follows from the Atomic Statement Rule applied to statement b,
using the formula {true} b: (p := false) (- p) . This is obviously a valid formula,
since no matter what state b is started in, it ends with p having the value false.

2. This is a consequence of the safety property (after b A - p) ~ Vl(after b A
-p) , which states that once control reaches after b with p false, it must remain
there (it has no place else to go) and p must stay false (no assignment in the
program can change its value).

3. For this program, control must be either in c or after c. This step separates
the two cases. Formally, it follows from the fact that the predicate in c k~ after c
is true in any program state. At this point we use the box abbreviation to indicate
that [](after b A - p) is true at all descendants of this node.

4. This follows from the fact that in c and at c k~ at d are equivalent. Again,
the branch in the lattice separates the cases.

5. This follows from the Atomic Liveness Axiom, applied to statement d, plus
the fact that after d is equivalent to at c.

6. The enclosing box tells us that {3up is true at this node. Thus, we can apply
the whi le Exit Rule to infer that control eventually leaves the whi le loop,
making after c true.

7. This is a trivial implication. The enclosing box tells us that [] after b is true,
and [] after b implies after b.
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs

at b A at c

1

after b A ~p

2

O(after b A ~p)

475

I'-I(after b A ~p}

c /41 at d

\
at ¢

°1

after c A after b

Fig. 7. Proof lattice for program of Figure 6.

In this program, the termination of the whi le loop was proved by showing that
[3-p must eventually become true. This enabled us to use the whi le Exit Rule to
show that control must eventually leave the loop. But suppose that we wanted to
verify termination for the similar program in Figure 8. In this program D - p does
not eventually hold, because after control leaves the loop, p is reset to true. How
can we hope to verify such a program, since the whi le Exit Rule requires us to
know D~p in order to prove termination? The answer is given by the proof lattice
in Figure 9. It illustrates a type of proof by contradiction that we use quite often.
We start by using the Single Exit Rule to break the proof into two cases (this is
the first branch in the lattice). In one of those cases, control remains forever
inside the loop. In this case, we can establish that eventually R~p must be true,
and then our reasoning is essentially the same as before.

The proofs above were quite detailed, with each application of a proof rule
cited explicitly. This is the sort of proof that mechanical verifiers do well but
people find unbearably tedious. If people as well as machines are to be able to use

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

boolean p ; integer x ;
a: cobegin

b: <p := false>
I

c: while <p> do
e: <p := true>

coend

d: <x := x+l> od ;

Fig. 8. Another terminat ing program.

D i n c

after c

at b A at c

/
at b A rl in c

/
at b

1
after b ~ -p

!

D (after b A ~p)

D ~ p]

476 S. Owicki and L. Lamport

after e

iil e

after c

l after e

after b A after e

Fig. 9. Proof lattice for program of Figure 8.

a proof method, they must be able to omit obvious details. For example, the
reasoning in step 7 of Figure 7 is so trivial that it does not really need to be
explained--so steps 6 and 7 can be combined and the "after c" node of Figure 7
eliminated. Also, steps 4-6 of the proof simply show that if control is in c and
D~p holds, then control must eventually be after c. This is such an obvious
conclusion that it could be reached in a single step. One often combines a number
of proof rules when they describe simple progress of control in a single process.

However, informal reasoning about concurrent programs often leads to errors,
so we must be careful when we leave out steps in a proof. Fortunately, some

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs 477

kinds of informal reasoning are relatively safe. We recommend the following
guidelines for constructing informal proofs:

(1) Each step in the proof should combine actions from just one process.
(2) To conclude that evaluating an expression E yields a value v, one must

prove [:](E = v). For example, in the above proof we were able to conclude that
the whi le test evaluated to false, and the loop therefore ended, because we had
proved []~p. (The [] is needed here for the same reason as in the Atomic
Statement Rule.)

In the rest of the paper, we often omit proof details that we feel are obvious,
following these guidelines. All the missing steps can be proved directly from the
axioms and rules we have given, and we urge the reader to do so if he is
uncomfortable with the proof. It has been our experience that proof lattices help
avoid mistakes in informal proofs by imposing a structure that makes it easy to
see where care is needed.

6. AN EXAMPLE: MUTUAL EXCLUSION

6.1 The Problem

We illustrate the use of these rules by proving a liveness property for a solution
to one of the standard problems in concurrent programming: providing mutually
exclusive access to critical sections. We must construct a program with two
processes, each repeatedly executing a noncritical and a critical section. The
content of these sections may be arbitrary, except that the critical sections are
guaranteed to terminate. Both processes are to be started in their noncritical
sections.

The solution must, of course, satisfy the mutual exclusion property described
in Section 4. However, a solution is useless unless it also satisfies some liveness
property. (For example, mutual exclusion can be achieved by merely halting both
processes.) Typically, one requires that under certain conditions, a process that
is trying to enter its critical section will eventually succeed. We construct a
solution that gives priority to Process 1--meaning that Process 1 is always
guaranteed eventual entry to its critical section, but Process 2 could be forever
locked out of its critical section if Process 1 keeps executing its critical section
often enough.

The requirement that Process 1 is always guaranteed eventual entry to its
critical section can be stated more precisely as follows:

It is always the case that after Process 1 finishes executing its noncritical
section, it will eventually enter its critical section.

This condition is a simple liveness property having the form

"after executing noncritical section ~, executing critical section".

To write this requirement as a formal temporal logic assertion to be proved, we
must remember to include the initial condition, specifying that the requirement
need only hold for execution sequences starting from the beginning of the
program. We also include as an explicit hypothesis the requirement that Process
2's critical section is always guaranteed to terminate. (This requirement does not

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

478 S. Owicki and L. Lamport

i n i t i a l

at S

condit ion

A

throughout the execution
i t w i l l always be t rue
t h a t :

m

~ r eventual ly :

f Process 2 not in

~ c r i t i c a l s e c t i o n

O - m CS z)

D (after NC 1

J Process 1 f in ished
noncr i t ica l section

leads to

A~O

1
Process 1 in i ts
c r i t i c a l section

Fig. 10. Process 1 liveness property.

• Hypothesis
that
Process 2 's
c r i t i ca l
sect ion
always
terminates

i , C'S:)

depend upon the termination of Process l 's critical section.) Letting NCi and CSi
be the noncritical and critical sections of Process i, and S the entire program, we
get the assertion shown in Figure 10, annotated to explain the meaning of each of
its clauses.

The Process 1 liveness property could be achieved rather simply by perma-
nently barring Process 2 from its critical section. Such a solution is clearly not
what is intended, so some other requirement is needed. A little thought will reveal
that giving Process 1 priority tacitly implies that Process 2 should be able to
enter its critical section whenever Process 1 stays in its noncritical section. This
condition can be expressed as follows:

It is always the case that, if Process 2 has finished its noncritical section and
Process 1 remains forever in its noncritical section, then Process 2 will
eventually enter its critical section.

Remembering to add the initial condition as an hypothesis, this gives us the
formal property shown in Figure 11.

The Process 2 liveness property only guarantees Process 2 entry to its critical
section if Process 1 remains forever in its noncritical section. One might reason-
ably want a stronger condition that guarantees Process 2 entry to its critical
section if Process 1 remains in its noncritical section long enough. This condition
cannot be expressed in our temporal logic, since there is no way to express "long
enough". It is actually the case that any program satisfying the Process 2 liveness
property must also satisfy such a "long enough" property. This is because
programs cannot test the future; program statements like " i fp will never become
true t h e n . . . " lead to logical contradictions. However, further discussion of this
would lead us too far from our main subject.
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs 479

f
~ S

I n t t i a l Condi t ion

r
:3

throughout the
execut ion t t
w i l l always be
t rue tha t :

tmpl ies tha t

I"1 [O I-I in NCl)

_ J " . T

IF Even tua l l y t t
becomes the
case that

Process 1 rematns
f o r e v e r tn - ~

n o n c r t t i c a] s e c t i o n

THEN

Process 2 f t n i s h e d
n o n c r t t i c a] sect ton

:3 (a~e~ ~ C z ~ . i . csz)]

e v e n t u a l l y leads to

Process 2 tn t t s
c r i t i c a l s e c t i o n

Fig. 11. Process 2 l iveness property.

6.2 The Solution

Our solution uses the same method for achieving mutual exclusion as does the
simple program of Figure 5. Each process i has a flagpi; and executes the protocol
"set my flag true and check that the other process's flag is false" before entering
its critical section. The simplest way to use this protocol is to precede each
process's critical section by the following:

Procedure A:
Set my flag true and wait until the other process's flag is false.

However, this is unsatisfactory because if both processes concurrently tried to
enter their critical sections, then they could both wait forever--a situation known
as deadlock.

Deadlock can be prevented by having each process do the following before
entering its critical section:

Procedure B:
Set my flag to true;
If other process's flag is true:

then set my flag false and try again
else proceed.

Although this avoids deadlock, it is unsatisfactory because each process might be
unlucky enough to examine the other process's flag only when it is true, in which

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

480 S. Owicki and L. Lamport

boolean P t ' Pz

S: cobegin
S I : begin

Pl

w I : while

do

:= false;

< lrue >

N C l :

a I :

b I :

CS 1 :

al:
od

end 1

S z : begin

Pz := false:

Wz: while < true >

do
N C z :

a z :

b 2 :

CS z :

od
end

eoend

noncritical section 1 ;

< Pl := trite > ;

while < Pz > do c1:

critical section 1 ;

< Pl := false >

<skip> od :

noncritical section 2 ;

< P2 := lrue > ;

while < Pl >

do Cz: < Pz := false > ;

ez: while < Pt > do <skip> od ;

f z : <P2 := true >

od
critical seclion 2 ;

< Pz := false >

Fig. 12. Mutual exclusion algorithm.

case no process ever enters its critical section. This type of behavior is called
"livelock" or "tempo blocking".

Note that the absence of deadlock is a safety property, since it implies that a
bad state (one in which both processes are waiting) cannot occur. Hence, it can
be proved with the method described in Section 4. However, the absence of
livelock is a liveness property, and requires a different proof method.

Our solution, given in Figure 12, uses the following approach. To enter its
critical section, Process 1 uses Procedure A- -not resetting its flag until it leaves
its critical section. When Process 2 wants to enter its critical section, it executes
a modified version of Procedure B: if it finds Process l's flag true, then it waits
until that flag becomes false before trying again. We assume that the noncritical
and critical sections do not modify the values of the variables pl and p 2 .

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs 481

6.3 The Correctness Proof

The proof that the program of Figure 12 satisfies the mutual exclusion property
is similar to the proof for the program of Figure 5 and is left to the reader. We
prove the two liveness properties.

We begin with an informal proof of the Process 1 liveness property, which is
illustrated by the diagram of Figure 13. If Process 1 is after its noncritical section,
then either it will eventually enter its critical section or else it will remain forever
in bl withpl true. We show by contradiction that the latter is impossible. Suppose
Process 1 remains in bl withpl true. Then, since Process 2's critical section always
terminates, it either will reach e2 or will remain forever in its noncritical section
with Pe false. However, if it reaches e2, it will remain there forever with p2 false
because p~ is true. In either case, p2 remains false forever. But this is impossible,
because in that case Process 1 must eventually leave loop bl, and this is the
required contradiction.

The rigorous proof of the Process 1 liveness property is obtained by formalizing
this argument. The informal reasoning relied upon certain simple safety properties
of the program--for example, that p2 is false while Process 2 is in its noncritical
section. Our f~rst step is to prove these safety properties. This is done by
demonstrating the invariance of the following predicate/, which relates the values
ofpi to control points in process i, and also asserts that S never terminates:

I: (in bl ~ p~) A (in NC1 ~ ~p l)

A (in e2 D -p2) A (in NC2 ~ ~p2)

A in $1 A in $2.

The proof of invariance involves simple local reasoning about each process and
is left to the reader. The invariance of I, plus the fact that I is true initially, imply
that at S D n L Thus we have shown that

(at S A []~ ~ i n CS2) ~-~ ([3IA []<> ~ i n CS2). (1)

We also need the fact that control in both processes eventually reaches and
remains inside the whi le loops--that is,

in $1 ,¢* [] in wl, and in $2 ~ [] in w2. (2)

This can be proved by combining simple liveness arguments that at S ~ in wi
with the fact that in wi is invariant.

Our next step is to prove that

([3IA []<> ~ i n CS2) D (at al ~.~ in CS~). (3)

Combining eqs. (1) and (3) gives the Process 1 liveness property. Figure 14
contains a proof lattice for eq. (3); the steps are explained below.

1. By TIA(a), the assertion

[](I A <> ~ i n CS2)

is equivalent to the hypothesis of eq. (3). Since the hypothesis is a "henceforth"
property that can be used throughout the proof, we extend our notation slightly
and attach it to a box containing the entire lattice.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

482 S. Owicki and L. Lamport

Process 1 a f t e r i t s
n o n c r i t i c a l s e c t i o n

Process 1 f o r e v e r in Process t e n t e r s
b t wi th Pt true c r i t i c a l section

Process 2 in e z Process 2 forever

in i t s n o n c r i t i c a l
section

/
PZ fo rever false

contradiction

Fig. 13. Informal proof of Process i liveness property.

2. This is a s imple appl icat ion of the Atomic Liveness Axiom.
3. Th is follows f rom the Single Exit Rule. I t sets up two cases: e i ther control

eventual ly enters the critical section and we are immedia te ly finished, or it
r emains forever in bl.

4. We use eq. (2) and the in $2 clause f rom I on the outer box.
5. Since we can assume [] I (by the outer box}, we have [](in bl D pl) . By TL5,

[] in bl then implies []p l . Hence, we can create a new box, in which we assume
[]p l .

6. Since in w2 is equivalent to at a2 V in b2 V in CS2 V at d2 V in NC2, this s tep
follows f rom TL9, with at a2 V in b2 subs t i tu ted for Q and in CS2 V at d2 V
in NC2 subs t i tu ted for P.

7. Here we are using local reasoning abou t control flow in Process 2, under the
assumpt ion V]pl. No te t ha t this assumpt ion comple te ly de te rmines the direct ion
t ha t will be t aken a t each w h i l e test. T h u s it is easy to see t ha t if control is
anywhere in a2 or b2, then it will eventual ly reach e2 and r ema in there.

8. We can assume []L so we have • (i n e2 D ~p2). By TL5, [] in e2 t hen implies

[] ~ p 2 .
9. I t follows f rom the w h i l e Exit Rule t ha t • ~ p 2 implies t ha t Process 1 mus t

eventual ly leave s t a t e m e n t bl. Since this node is inside a box labeled [] in bl, we
have a contradiction.

10. Here we use the trivial implicat ion false D P for any P.
11. Since we are assuming <> ~ in CS2, the Single Exi t Rule implies t ha t in CS2

~ . at d2, and the Atomic Liveness Axiom implies t ha t at d2 ~ . at NC2.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs 483

1

D (I A <> -in CS 2 }

at a I

[]

at b 1

ha b I

5
D(in

[] -Pz

false
\

at CS 1

[] in b I A [] in w z

baAPlAin W z) / / NNN~

at a z V in b z • (i n CS z V

[] in e z

at d 2 V in NC z)

11

[] in NC 2

Fig. 14. Lattice proof of Process I liveness property.

12. I t follows from I tha t in NC2 ~ ~p2.

This completes the proof of the Process 1 liveness property. To prove the
Process 2 liveness property, we use the proof lattice of Figure 15 to show tha t
D (I A ~[:3 ~ i n CS1) implies a t a2 ~ , in CS2. Using this result, we can prove the
Process 2 liveness property with the same kind of reasoning used for the Process
1 liveness property. The steps in the lattice are explained below.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

484 S. Owicki and L. Lamport

1

o (I A <>D - in CS~)

E3(in b z

at a~

L,
at b z

r-I in b 2

[] (bl b 2 A -bl CS I A in wl)

[] ha b 1 r'l in NC 1

in CS 1 [] - P l

~in b z

, /
false

al CS 2

Fig. 15. Lat t ice proof of Process 2 l iveness property .

1. As in the preceding lattice, we a t t ach the assumpt ion to a box t h a t contains
the entire proof.

2. Th is step is based on control flow reasoning for Process 2.
3. As before, we use the Single Exit Rule to b reak our proof into two cases, and

prove by contradict ion t ha t control cannot r emain forever in the loop.
4. We use eq. (2) and the in $1 clause f rom I on the outer box, together with

~[:] ~ in CS1 also on the outer box.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs • 485

5. Simple control flow reasoning about Process 1 shows that if it stays in wl
and never enters its critical section, then eventually it must stay in bl or in its
noncritical section.

6. The Process 1 liveness property, which we have already proved, guarantees
that Process 1 will be able to enter its critical section if Process 2 does not stay
forever inside its critical section. But here we may assume that [] in b2, so Process
1 must eventually enter its critical section.

7. Having Process 1 in its critical section gives a contradiction, since within the
inner box we can assume [] ~ in CSI.

8. Here we are again using the trivial fact that false implies anything.
9. This follows from the assumption that []I holds.
10. Local reasoning about Process 2 shows that control cannot remain forever

in b2 if pl remains false.
11. Process 2's leaving b2 contradicts the assumption from the inner box.

This completes the proof of the two liveness properties for the program of
Figure 12.

7. SYNCHRONIZATION PRIMITIVES

For programs written in our simple language, a nonterminated process can never
stop. A process can wait for something to happen only by executing a "busy
waiting" loop. Thus, the processes in our mutual exclusion algorithm had to wait
in whi le (pi) do . . . od loops. This is undesirable in a multiprogramming
environment, since a waiting process could tie up the processor in a pointless
loop. It is common in such environments to provide synchronization primitives
that release the processor until the desired condition is true. Our basic method
for proving liveness properties can be applied to programs using such synchroni-
zation primitives. We illustrate this by considering the well-known semaphore
primitives introduced by Dijkstra [2].

7.1 The Fair Semaphore

A semaphore is a nonnegative integer variable that can be accessed by two
primitive operations: P and V. A V operation increments the value of the
semaphore by one, while a P operation decrements it by one. However, since the
semaphore's value must be nonnegative, a P operation can only be performed
when the value is positive. This means that if a process's control is at a P(s)
operation when the value of the semaphore s is zero, then the process must wait
until another process has performed a V(s) operation before it can proceed. A
V(s) operation can always be performed.

In order to prove properties of programs that use the semaphore primitives, we
need a precise definition of the semantics of these primitives. It is not hard to
define their safety properties, and various axiomatizations have been given--for
example, in [5] and [9]. Specifying their liveness properties presents a more
interesting problem. In fact, the liveness properties of the semaphore operations
were not fully specified in their original definition, and several different versions
have been implemented. The differences result from different methods of choosing
which process to activate when a V(s) operation is executed and several processes

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

486 S. Owicki and L. Lamport

are waiting to execute P(s) operations. Lipton [12] distinguishes several different
ways of making that choice, each leading to different liveness properties for the
semaphore operations. For our example, we assume that the choice is made
"fairly".

We define the P and V operations to be atomic. The axioms defining the V
operation are quite straightforward:

Y OPERATION AXIOMS. For the statement l: { V(s)):

Safety: {Q[s + 1 / s]} V(s) {Q}
Liveness: at 1 ~ after 1

where Q [s + 1 / s] is the formula obtained by replacing every free occurrence
o f s i n Q b y s + l.

The safety axiom states that the V operation adds 1 to the semaphore; the
liveness axiom that the V operation always terminates.

The subtle part of axiomatizing the semaphore operations lies in specifying
under what conditions a P operation must eventually terminate. It is obviously
not enough that the semaphore be positive when control reaches the P operation,
because it could be decremented by another process before that operation is
executed. The following axiom states that a process trying to perform a P
operation will not have to wait forever while other processes keep executing P
operations on that semaphore:

P OPERATION AXIOMS. For the statement l: (P(s)):

Safety: {Q[s - 1 / s]} P(s) {Q A s >_ 0}.
Liveness: (at 1 A [3O(s > 0)) ~- after 1.

The safet axiom states that P decrements the semaphore, and that the
semaphore's value will be nonnegative after the operation is executed. This
prevents the operation from being executed when the semaphore is 0. The liveness
axiom states that a P operation will be executed if the semaphore repeatedly
assumes a positive value. (The formula E]O(s > 0) states that s is positive
infinitely often.)

The Atomic Liveness Axiom and the Atomic Statement Rule of Section 5 hold
for all the atomic statements of our original language. They also hold for a { V(s))
statement, but do not hold for a (P(s)} statement. However, the remaining rules
from Section 5--in particular, the Single Exit and General Statement Rules--do
hold for these new statements. {Their proofs, given in the appendix, are not
affected by the introduction of the new statements into the language.)

7.2 A Simple Example

We illustrate the use of these semaphore axioms with the simple mutual exclusion
algorithm of Figure 16. To prove mutual exclusion, we first show the invariance
of the following immediate assertion:

I: 0 ~ s <_ 1 A 1 - s = number of processes i such that near CSi is true

where near CSi - in CSi V after CSi.
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs 487

semaphore s ;

ao: < s := 1 > ;
cobegin

wl: while < true >

do
NC 1 : noncritical section 1

a 1 : < P(s)> ;

CS 1 : critical section 1 ;

d~ : < V(s) >

od

coentl

while < true >
do

NC2 : noncritical section 2 ;

a 2 : < P(s)> ;

CS 2 : critical section 2 ;

d 2 : < V (s) >

od

Fig. 16. Mutual exclusion algorithm using semaphores.

(We could, of course, write a more formal s ta tement of the clause "1 - s =
number o f . . . " .) This allows us to conclude tha t

a t ao D 0 I , (4)

from which mutual exclusion follows. The details of this safety proof are straight-
forward and are omitted.

Our liveness axiom for the P operat ion guarantees tha t any process tha t wants
to enter its critical section will eventual ly do so, unless the other process remains
forever inside its critical section. Thus, we have the following liveness proper ty
for Process 1:

(a t ao /k D O ~ i n CS~) D (a t a l ~-, i n CS1). (5)

Note tha t this is essentially the same as the Process 1 liveness proper ty of the
previous example. A similar liveness proper ty holds for Process 2.

To prove eq. (5), we first prove the following formula, which states tha t the
semaphore repeatedly assumes a positive value unless some process stays inside
its critical section forever:

(O I /k D O ~ n e a r CS1 /x D O ~ n e a r CS2) D (s = O ~ , ~ s = l) . (6)

Its proof is given by the lattice of Figure 17, with the steps explained below.

1. This is the usual introduction of an assumption to be used in the remainder
of the proof.

2. The safety invariant implies tha t when the semaphore has the value 0, one
of the processes is near its critical section.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

488 S. Owicki and L.

!
[] (I A O -near CS 1

Lamport

A O -near CS z)

s = O

~ 2

near C S 1

after CS 1

\

\
near C S z

3

after CS z

s = 1

Fig. 17. Proof lattice for eq. (6).

3. The assumption that a process does not remain in its critical section,
together with the Single Exit Rule, guarantees that if a process is near its critical
section, then it is eventually after it.

4. The liveness axiom for the V operation implies that if control is after CSi,
then the subsequent V operation will terminate. We can then apply the General
Liveness Rule to conclude that s will equal 1 when the V(s) operation terminates.
This is based on the truth of (s >_ 0} V(s) (s > 0) and on the fact that the
invariant implies that s is always 0 or 1.

Using eq. (6), we now prove eq. (5) with the lattice of Figure 18, whose steps
are explained below.

1. As usual, we put a box around the whole lattice labeled with the hypothesis.
2. This is an application of the Single Exit Rule, noting that at al = in al since

al is atomic.
3. Since at al implies ~near CS~, we can conclude from eq. (6) that s = 0

s - 1. Since s is always nonnegative, this implies [~O(s > 0).
4. The liveness axiom for the P(s) operation implies that if control is at al and

DO(s > 0) is true, then eventually the P(s) operation will be executed and control
will be after al, contradicting the assumption of the inner box that control is
forever at al.

This completes the proof of eq. (5), the liveness property for Process 1. The
corresponding property for Process 2 is proved in exactly the same way.

7.3 Other Semaphores

The above proof may have seemed rather long for the simple program of Figure
16, whose correctness seems obvious. However, liveness properties for programs
using semaphores tend to be rather subtle, and there are quite reasonable ways
of defining the semaphore operations for which the algorithm would not guarantee
the liveness property (5).
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs

1
[] (! A 0 -in CSz)

489

[] at a I

al a 1

[] a t a I

n o s > 0

4

false
\

\ /
hz CS 1

Fig. 18. Proof lattice for s emaphore program.

The P operation liveness axiom we gave above is called the fairness axiom.
Some semaphore implementations are not fair; these implementations are de-
scribed by a weaker liveness axiom.

WEAK LIVENESS AXIOM. For the s tatement l: (P(s)):

(at 1 A O(s > 0)) ~ after 1.

This axiom states that a process cannot wait forever at a P operation if the
semaphore remains positive. However, it does not prevent the process from
waiting forever if other processes keep performing P operations that reset the
value to 0. This axiom is not enough to guarantee property (5) for our mutual
exclusion algorithm, because it does not rule out the possibility that Process 1
waits forever while Process 2 repeatedly enters and leaves its critical section.

Two other kinds of semaphores have also been proposed, defined by the
following properties:

First-Come-First-Served. Waiting processes must complete their P operations
in the order in which they began them.

Latch ing Property. If a process executes a V operation when there are other
processes waiting on the semaphore, then it cannot complete a subsequent P
operation before one of the waiting processes completes its P operation.

These are safety properties, since they state that "something bad cannot
happen". (This becomes more apparent if the first property is expressed as

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

490 S. Owicki and L. Lamport

"processes cannot complete their P operations out of order".) They are usually
combined with the weak liveness property. For a bounded number of processes,
first-come-first-served plus weak liveness implies fairness.

In order to state these properties precisely, some additional structure must be
given to the semaphore operations. In particular, the P operation cannot be
atomic, because a process must do something after it reaches the P operation to
announce that it is waiting. The formalization of these properties is beyond the
scope of this paper.

8. CONCLUSION

We have considered two kinds of correctness properties for concurrent programs:

Safety properties:--stating that some assertion always holds.
Liveness properties--stating that some assertion will eventually hold.

We have used temporal logic to provide a simple, uniform logical formalism for
expressing and reasoning about these properties.

Several methods for proving safety properties of concurrent programs have
appeared. In this paper, we have presented a method for proving liveness
properties. The method seems powerful enough to prove a large class of such
properties, although we have not characterized precisely what can and cannot be
proved by it. The method provides a straightforward way of turning an intuitively
clear informal proof--one that captures our understanding of why the program
works--into a logically rigorous proof. We have found it better to separate proofs
of safety and liveness properties, rather than to combine them as in [16].

Our method is independent of any particular programming language. Each
language has its own axioms, but the basic proof method does not change. For
example, synchronization mechanisms other than semaphores have liveness ax-
ioms that describe their conditions for termination. If programs based upon the
same algorithm were written in two different languages, we would expect the
proof lattices used in their correctness proofs to have the same structure.

Safety and liveness are not the only kinds of program properties. There are
others that we have not considered, such as the following:

(1) Some assertion will become true within a certain number of process execution
steps.

(2) Some assertion might possibly become true.
(3) The program is equivalent to some other program.

In fact, these properties cannot be expressed in our temporal logic. Their omission
was deliberate, since we could have chosen other modal logics in which such
properties are expressible. The simplicity of our approach is due largely to a very
careful limitation of its scope. We have deliberately eschewed unnecessary
generality, devising a method for proving exactly what we want to prove and no
more. We have been guided by the desire to provide a practical method for
proving properties of concurrent programs, and have rejected irrelevant general-
ity.

We do not wish to imply that we have said the last word on proving properties
of concurrent programs. We feel that we have provided the foundation for a
useful system for proving properties of real concurrent programs. However,

ACM Transac t ions on Programming Languages and Systems, Vol. 4, No. 3, Ju ly 1982.

Proving Liveness Properties of Concurrent Programs 491

constructing a useful edifice upon this foundation will require the ability to
handle more sophisticated language features, and further work in this direction
is needed.

The logical system described in this paper is an endogenous one, meaning that
each program defines its own separate formal system. In an endogenous system,
one is always reasoning about the entire program. An exogenous system is one in
which there is a single formal system within which one can reason about a large
class of programs, such as all programs written in a certain language. In such a
system, the formulas explicitly mention programs. The logic of [9] for manipulat-
ing (P} S {Q} formulas is an example of an exogenous system. Such systems are
convenient because they provide a formal framework for structured proofs, in
which one derives properties of a statement from the properties of its components.

The temporal logic we have used is endogenous, and there is no way to base an
exogenous system upon it. For example, the property (P} S (Q} cannot be
expressed in this temporal logic if S is not the entire program. We are currently
developing an exogenous temporal logic for proving both safety and liveness
properties of concurrent programs.

Dynamic logic [18] is a well-known exogenous logic for programming language
semantics. However, it is less attractive than temporal logic for reasoning about
concurrent programs because it is based on a branching time rather than a linear
time model of computation, a difference discussed in [10]. Process logic [6, 17] is
an exogenous logic that can express characteristics of both the linear and
branching models, so it is more general than temporal logic. However, this is the
sort of generality that we see as inappropriate for a practical verification method.

APPENDIX. DERIVED PROOF RULES

We now prove the validity of the derived proof rules of Section 5. To do this, we
have to prove a more general kind of safety property than has been discussed so
far: properties of the form (P /~ []R) D E]Q. The method of proving these
properties is similar to that used for ordinary safety properties and involves
finding an assertion I satisfying the following conditions:

• (P A R) • I ,
• (I A R) D Q , and
• (I A D R) ~ I 1 L

The last condition is a generalized form of invariance. To verify it, one shows
that starting in a state in which I A R is true, executing a single atomic action
yields a new state in which I is true or R is false. In the notation of [9], this is
expressed by the formula R ~- (I} S (I}, where S is the entire program. (This
actually proves the stronger assertion I D R [] / , where the binary operator [] is
defined in [10], but we will not need this stronger assertion.) When a proof
depends on such a generalized safety property, we give the assertion I and argue
informally that it is invariant if R is always true.

CONCATENATION CONTROL FLOW. For the s ta tement S ; T,

at S ~¢* after S, at T ~* after T

at S ~ , after T.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

492 S. Owicki and L. Lamport

PROOF. The definition of at implies that after S -= at T , so the first hypothesis
can be rewritten as at S ~ at T. The second hypothesis, together with the
transitivity of ~* (TL7), then implies the conclusion. [3

SINGLE EXIT RULE. For any s tatement S:

in S D ([] in S k~ <> after S) .

PROOF. The proof is based on the following safety property:

(in S / k [] ~af ter S) D [] in S. (7)

Intuitively, this states that if control starts in S and never reaches the control
point after S, then it stays in S forever. It is proved by observing that any atomic
action in our programming language transforms a state where in S is true to a
state where either in S or after S is true.

The safety property (7) can be rewritten as

in S D ([] in S V ~ [] ~af ter S) .

The duality of [] and <> implies that this is equivalent to

in S D (• in S V ~ after S).

Finally, we apply TL2 to obtain the desired result. 0

cobegin CONTROL FLOW. For the s ta tement c:cobegin S II T coend,

at S ,~* after S, at T ~* after T

at c ~ , after c.

PROOF. The proof requires the safety property

I: ([3 in c) D ((after S D [] after S) A (after T D [] after T)) ,

which states that if control never leaves the cobegin statement, then once it
reaches the end of one of the processes it remains there forever. This follows
from the definition of after and the fact that any atomic action that makes after
S or after T false has to make after c false too.

Termination of the cobegin is proved by the lattice of Figure 19, whose steps
are justified as follows:

1. This is an application of the Single Exit Rule.
2. This step is just a rewriting, since at c = (at S A at T) .
3. The hypothesis (recorded on the outermost box) implies that both S and T

terminate.
4. The safety property I (from the outermost box) implies that once control

reaches the end of S or T, it remains there as long as the cobegin does not
terminate.

5. This is implied by the temporal logic theorem (<>E]P A ~[~Q) D <>E](P A Q).
6. This is a rewriting, based on the fact that (after S A after T) = after c. [3

G E N E R A L S T A T E M E N T R U L E .

{P} S [Q}, • (i n S D P), in S ~ after S

in S ~-~ (after S /~ Q).

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs • 493

I A (a t S ~ afte r s) A (a t I ~ af ter t)

[] in c

a l ¢

at c A D m c

2

at s A at I

3

0 cCer s A 0 after t

<>1"3 after s A <>['3 after t

1"3 after s A I-I after I

ofter c

Fig. 19. Proof lattice for c o b e g i n terminat ion.

PROOF. The proof is similar to tha t of the Single Exit Rule. We make use of
the safety property:

(in S A [][(in S ~ P) A ~(after S/X Q)]) ~ [] in S,

whose validity can be intuitively justified as follows. We assume {P} S {Q} and
Q(in S ~ P), so for any execution starting in S with P true, if S terminates then
it must te rminate with after S A Q true. Thus, if S terminates, it contradicts the
assumption • - (a f t e r S A Q), so control can never reach after S. Hence, by the
Single Exit Rule, control must remain forever in S.

Manipulat ing this safety proper ty as before, we can obtain

(in S A [=](in S ~ P)) ~ (E] in S V ~(after S A Q)).

Since we assume tha t S terminates, this can be simplified to

(in S A El(in S ~ P)) ~ ~(after S A Q).

Since the second hypothesis of this implication is one of the assumptions of the
General S ta t ement Rule, we can conclude tha t in S ~ <>(after S A Q). Th e result
now follows from TL2.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

494 S. Owicki and L. Lamport

ATOMIC STATEMENT RULE. For any atomic s ta tement (S):

{P} (S) {Q}, [:](at (S) D P)

at (S) ~ . (after (S) /k Q).

PROOF. This is an obvious corollary of the Atomic Liveness Axiom and the
General Statement Rule. The former guarantees that the atomic statement
terminates, while the latter guarantees that if it terminates, it terminates with Q
true. D

whi le TEST RULE. For the s ta tement w:whi le (B) do S od:

at w ~-~ ((at S A B) V (after w A ~B)).

PROOF. This proof is similar to the proofs of the Single and General Statement
Rules. In this case the starting safety property is

[at w A []~((a t S A B) k/ (after w A - B))] ~ [] at w.

This is true because the semantics of the whi le test imply that if control leaves
the point at w, then it reaches a state where either at S A B or after w A - B is
true. The above implication can be rewritten as

at w ~ [[] at w V <>((at S A B) V (after w A ~B))].

But the whi le Control Flow Axiom implies - ~ at w, so this reduces to

at w ~ <>((at S A B) V (after w A - B)) .

Applying TL2 gives the desired result. D

whi le EXIT RULE. For the s ta tement w: whi le (B) do S od:

(at w A [](at w ~ B)) ~ at S;
(at w A [](at w ~ ~ B)) ~.~ after w.

PROOF. We give the proof for the first rule; the proof for the second is quite
similar. We start with the safety property

[at w A [](at w ~ B) A [] Mat S] ~ [] at w.

Rewriting it in the standard way gives

[a t w A [] (a t w ~ B)] ~ [• a t w V < > a t S] .

Since the whi le Control Flow Axiom guarantees - [] at w, this reduces to

(at w A [](at w D B)) ~ <> at S,

which, after application of TL2, yields the desired result. []

ACKNOWLEDGMENTS

Many of the ideas in this paper were first put forward in a seminar on temporal
logic at Stanford. We are particularly grateful to participants Sheldon Finkelstein,
John Gilbert, Brent Hailpern, Dick Karp, Arthur Keller, Amy Lansky, Larry
Paulsen, David Wall, and Nagatsugu Yamanouchi for helping us clarify our
thinking. Amy Lansky, Pierre Wolper, and Nagatsugu Yamanouchi provided
helpful comments on earlier drafts of the paper.
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Proving Liveness Properties of Concurrent Programs 495

REFERENCES

1. BURSTALL, R.M. Program proving as hand simulation with a little induction. In Information
Processing 74, Stockholm, 1974, pp. 308-312.

2. DIJKSTRA, E.W. The structure of the "THE"-multiprogramming system. Commun. ACM 11, 5
(May 1968), 341-346.

3. FLON, L., AND SUZUKI, N. The total correctness of parallel programs. SIAM J. Comput. 10, 2
(May 1981), 227-246.

4. FRANCEZ, N., AND PNUELI, A. A proof method for cyclic programs. Acta Inf. 9, 2 (1978), 133-
158.

5. HABERMANN, A.N. Synchronization of communicating processes. Commun. ACM 15, 3 (Mar.
1972), 171-176.

6. HAREL, D., KOZEN, D., AND PARIKH, R. Process logic: Expressiveness, decidability, complete-
ness. In Proceedings of the 21st Symposium on the Foundations of Computer Science, IEEE,
Syracuse, N.Y., Oct. 1980, pp. 129-142.

7. KELLER, R.M. Formal verification of parallel programs. Commun. ACM 19, 7 (July 1976), 371-
384.

8. KWONG, Y.S. On the absence of livelock in parallel programs. In Lecture Notes in Computer
Science, vol. 70: Semantics of Concurrent Computation. Springer-Verlag, New York, 1979, pp.
172-190.

9. LAMPORT, L. The "Hoare logic" of concurrent programs. Acta Inf. 14, 1 (1980), 21-37.
10. LAMFORT, L. "Sometime" is sometimes "not never": On the temporal logic of programs. In

Conference Record of the 7th Annual ACM Symposium on Principles of Programming Languages,
Las Vegas, Nev., Jan. 28-30, 1980, pp. 174-185.

11. LAMPORT, L. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng. SE-
3, 2 (Mar. 1977), 125-143.

12. LIPTON, R. On Synchronization Primitive Systems. Ph.D. dissertation, Dep. of Computer
Science, Carnegie-Mellon Univ., Pittsburgh, Pa., 1974.

13. MANSA, Z., AND WALDINGER, R. Is "sometime" sometimes better than "always"? Intermittent
assertions in proving program correctness. Commun. ACM 21, 2 (Feb. 1978), 159-172.

14. OWICKI, S., AND GRXES, D. An axiomatic proof technique for parallel programs. Acta Inf. 6, 4
(1976}, 319-340.

15. PNUELI, A. The temporal semantics of concurrent programs. In Lecture Notes in Computer
Science, vol. 70: Semantics of Concurrent Computation. Springer-Verlag, New York, 1979, pp.
1-20.

16. PNUELI, A. The temporal logic of programs. In Proceedings of the 18th Symposium on the
Foundations of Computer Science, IEEE, Providence, Nov. 1977, pp. 46-57.

17. PRATT, V.R. Process logic: Preliminary report. In Conference Record of the 6th Annual ACM
Symposium on Principles of Programming Languages, San Antonio, Tex., Jan. 29-31, 1979, pp.
93-100.

18. PRATT, V.R. Semantical considerations on Floyd-Hoare logic. In 17th Symposium on Founda-
tions of Computer Science, IEEE, Houston, Tex., Oct. 1976, pp. 109-121.

Received November 1980; revised November 1981; accepted November 1981

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

