Copyright Notice

The following manuscript
EWD 391: Self-stabilization in spite of distributed control
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 41-46 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

f"r*U""Q’l - O

Self-statilization in spite of distributed control.

by

Edsger W.Dijkstre, BURROUGHS

Abstract; & system of finite state automata can be built in such a way
that regardless their initial states, the total system will converge
in a firnite number of steps towards a synchronization regime.

Key Words: self-stabilization, distributed logic, mutual exclusion,

synchronization, co-operation, concurrercy.

CR Cate=gory: 4.32

Author's =sddress: Burroughs, 1st October 1973
Plataanstraat %
NUENEN - 4565
the Netherlands

EWD391 - 1

self-stabilization in spite of distributed control.

A systematic way for finding the algorithm ensurinrg some desired
form of co-operation between a set of loosely coupled sequential processes
can in general terms be described as follows: the relation "the system is
in a legitimate state" is kept invariant. As a consequence, each intended
individual process step that could possibly cause vielation of that
invariant relation has to be preceded by a test that it won't do so,
and depending on the outcome of that test the critical process step is
either caused to take place or it —-and with it the process of which it
is a part-- is delayed until a more favourable system state has been
reached. With a suitable choice of the set of legitimate states one can
indeed introduce the rule that a critical process step will be delayed
only as long as its execution would lead to violation of the corresponding

invariart relatien.

The resulting design is readily implemented if ‘the different
sequential processes can be éranted mutually exclusive access to a common
store in which the current system state is recorded: then a relation between
(the values DF) the variables in that commonly accessible store is then the

core of what we could call "“the centralized control”.

A complication arises when there is nosuch commonly accessible store
and "the system state" must be recorded in variables distributed over the
various processes, and furthermore the communication facilities are limited
in the sense that each process can only exchange information with "its
neighbours™, a (possibly small) subset of the total set of processes. (We
can view the processes as the nodgs of a connected graph in which each of
the (sparse) set of edges denotes the neighbour relation.) The complication
i1s that & node's behaviour can only he influenced by that part of the total
-System state description that is available in that node: local actions taken
on account of local information must accomplish a global objective. Such
systems {with what is quite aptly called "distributed contral®) have been
designed, but all such designs 1 am familiar with are unstable in the sense
that, when once in an illegitimate state, they could remain so forever. I

L

call a system "self-stabilizing" when, regardless its initial state, it is

guaranteed to arrive at a8 legitimate state in a finite number of steps.

EWD3I9 - 2

{Whether the property aof self-stabilization is interesting either as a
start procedure, or for the sake of system robustness or merely as an
intriguing problem, is 2 guestion that falls outside the scope of this

article.)

Unable to decide on theoretical grounds whether non-trivial self-
stabilizing systems with distributed control could exist at all, I decided

to try to design one under the following constraints and objectives.

We consider a system built from N+1 finite state machines numbered
from O through N. (The state space for the total s;stem is then the Cartesian
product of the N+1 individual state spaces af the respective machines.} The
machines are arranged in a ring, i.e. for O <i <N, machine nr.i has

machine nr.i+! as its righthand neighbour, and machine nr.N has machine

nr.0 as its righthand neighbour.

In the middle of the ring stands a demon, each time giving, in "fair
random order" one of the machines the command "to adjust itself". (In "fairp:
random order" means that in each infinite sequence of successive commands
issued by the demon, each machine has received the command to adjust itself
infinitely often.) Upon "adjustment" a machine goes into a (new) state,
which must be a function of its own (old) state and the current states

af its (two) neighbours,

Furthermore, as a function of its own state (and possibly of the
states of its neighbours) a machine may be "privileged". The legitimate
states are defined as those states in which exactly one machine is privileged
and for which all possible successor states are legitimate as well; further-

more it is required that then the privilege will rotate araund the ring.

Side_remark. 1 was hoping for an existence proaof of self-stabilizing
systems with distributed coatrol: a ring is then one of the most natural,
simple connection graphs. My choice of legitimate states, viz. requiring
convergence towards a solution of the mutual exclusion problem is under—
standable for historical reasons [TJ, (2], [3], [4], it is also justified
by i1ts central position in the whole field of cantrolling co-operation
between longély coupled processes. Finally, the choice of the demon was

suggested by a recent experience with a cyclic relaxation prablem in which

EWL39T - 5

“"fair random relaxatio-"

would converge to a limit, while simultaneous
relaxztion could lead to oscillation (,WD386, unpublished). So much for

the justificatior of t=e problem choice.

Again I beg my intrigued readers to stop reading here and to try to
solve the stated problem themselves, for only then they will (slowly!)
build up some sympathy with my difficulties: the problem has been with me
for many months, while [was oscillating between trying to find a solution
—--and many an at first sight plausible construction turned out to be wrong!--
and trying to prove the non-existence of a solution. And all the time I had
no indieation in which of the two directions to aim, ner, of the simplicity

or complexity of the argument —-if any!-- that would settle the question.

* *
k3

The crucial observation is that, in genersl, the problem cannot be
solved i1f, in addition, we require our machines to be identical., For if
the number of machines is non-prime, our starting situation can have a
cyclic symmetry of degree n (2 <n < N/2) and if then the demon --and
he is free to do sol!-- gives his first n commands equally spaced arocund
the ring, the cyclic symmetry will not have been destroyed. If thexdamon
continues with such fair (but nasty) behaviour, we shall never reach the
state after which, forever, a single machine will be privileged. Making
nat all machines identical can be accomplished in two extreme ways: either
by making them all differsnt or by making one exceptionral. In view of our
obligation to enforce asymmetry, one machine exceptional and all others

mutually equal seems the most promising choice.

Secondly, it is not a priori excluded that the net effect of the

command "adjust yourself" is nil, wviz. that the new state of the machine

to which the command was giveni equals its old state. In the legitimate
state we have no particular désire to let the adjustment command have any
effect when given to 2 machine far away from the privileged one. To simplify
matters we carn look for a solution in which the adjustment command has anly
effect when directed towards a machine that at thet moment is privileged,
and the result of whaose adjustment will be that it looses its privilege.
When now the furction "privileged" is chosen such that at least one machine
must be privileged, then "dead ends” are excluded a priori: the Ting will

remain alive, and we can cancentrate on the requirement that the system

Ewi39l ~ 4

converges to the state from where a single privilege will rotate past all

machines.

Thirdly, we may feel tempted to introduce some sort of counters, bhut
Eecause we are confined to finite machines, true counters are excluded snd
the best we can hope for are counters counting modula K, where ¥ is some
sufficiently large constant (certainly > 1). For two counter values
modulo K, the maximum or minimum is not defined and we cannot hope to
establish progress towards the legitimate state because some "maximum

counter value"

decresses. Well-defined are equality and a successor function
that can be applied a limited number of times without leading to ambiguity.
This suggests to define the function "being privileged" in terms of equality

of states.

In terms of equality we can define a function "being privileged" such
that at least one machine is privileged guite easily when bearing in mind
that one machine --let it be machine nr.0-- should be exceptional. Let
for 1 << i <N mechine nr.i be privileged when its state differs from that
of machine nr.i-%, i.e. when x[i] £ x[i-1]_ We chgose this —--rather than
the other way round-- because now non-privileged implies x[i] = x[i—1]
and equality is transitive: in other words, when all machines except machiné
nr.0 are non-privileged, X[O] = x[N] and when we define this as the
condition for machine nr.0 being privileged, our reguirement of at least

one machine being privileged is therefore met.

Furthermore we had suggested that adjustment would cause the machine
in question to loose its privilege. For the normal machines (1 < i E;N) we

bave no freedom anymore: adjustment of machine nr.i means
"if x[i] £ x[i-1] then xfi] == x[i-1] £i" .
For the exceptional machine nr.0 I now suggest

"if x[0] = x[N] then x[O] t= (x[O]+ 1)mod K fi"

and it is only here, where a new state has to be generated and that it
becomes significant that we consider the machire states x as a counter

moduio K.

To start with we remark that when a machine "fires" --if we may use

that term for the non-nil adjustment that takes place when the demon gives

FWD39* - 5

the commard to a privilegqed machine--it loses its privilege, it may give
the privilege to its righthand neightour and to no ore else. Because at
least one machine must he privileged, firing of +the orly privileged machine
will always give the only privilege to its righthand neighbour: once in a
legitimate stste the system will remain in a legitimate state and the

privilege will rotate around the ring.

Furthermore: suppose that the exceptional machine is not privileqged,
i.e. x[O} # K[N], then in a finite number of commands it will become
privileged. For let j be the minimum value such that x[j] A x[O]; because
i is the minimum value, x[j—i] = x[O] and therefore x[j] £ x[j—1] y i.e.
machine nr.j is privileged. In a finite number of commands the dewmon will
point to it, thus incressing j if j <N or making «[N] = x[0] if j =,
i.e. making the exceptional machine privileged. So the exceptional machine

will continue forever to get the opportunity to fire.

Let us now investigate what happens when we start the system in an
arbitrary state. When the exceptiornal machine fires for the first time, we
colour its new state blue and all other states white; from then onwards
each state created by the exceptional machine or copied from a blue state by
a normal machine will be blue as well. If h is the number aof times the
exceptianal machine fires while x[N] is 8till white, then --because K > 1--
h will satisfy h <N : after the first firing, the copying process along
the chain of normal machines can supply machine nr.N at most with another

N-1 further white state, differing in succession.

Without loss of generality we could have chosen initially x[0] = k-1 ,
If K é:N y then the first N firings of the exceptional machine have
created the blue states from O through N-1 |, and scanning the blue states,
starting at the exceptioral machine and going to the right, we find a
sequence of non—ﬁétreasing blue x-values. At the next firing of the exceptional
machine with x{O] = N-1 , also x[NJ = N-? must hold. At that moment,
however, x[NJ must be blue as well and therefore all states must be = N-1,
i.e, the system has arrived in ore of its legitimate ststes. Arng this com-
oletes the proof for self-stabilization provided K > i (andrfor smaller
valiues of K counter examples kill the assumption of self-stabilization,)

* *
*

EWD391 - 6

So far, so goed, but one may obiect that I have introduced & rather
powerful demon that may be very awkwerd to implement. Cap we gliminate that

centralirzed agency, can we rveplace it by "a distributed demon"?

Each variable x[i] is only inspected and assigned tao by machine nr.i
and orly inspected by its righthand neighour. We assume each variable x[i]
equipped with its own, private two-way switch, excluding simultaneous access
by the two neighbours it connects. And for the machines we assume that they
will adjust themselves with a finite speed and a finite frequency, instead
of waiting for the demon's command. Does it work? Amazingly it does without

any further refinements.

Two simultaneous adjustments of non-neighbouring machines have neo
mutual interference at all., An adjustment by the exceptional machine cannot
suffer from simultaneous activity of its lefthand neighbour nr.N , because
x[N] is inspected only once per adjustment. But adjustment of a normal
machine nr.i , although possibly inspecting x[i-?] twice during a single
adjustment, cannot suffer from its lefthanrd neighbour sctivity either: if
x[i—1] changes its value between the two inspections, the first value
differed from x[i]; if the second value differs from x[i] as well, the
program behaves as if this value was also offered the first time, if the
second value equals x[i] s the assignment has no effect and it is as if

the adjustment had not taken place at all!

Conclusion. Self-stabilirzing systems with distributed control do exist in
the sense that local decisions force the system towards satisfying and then
maintaining ® global requirement. In particular, lecal mutual exclusion is

a sufficient building block for eventually achieving mutual exclusion globally.

References.

[1] Dijkstra, E.w. Suluticnx of & problem in concurrent programming
control., Comm.ACM 8, 9 (Sept.1955), 569

[EJ Knuth, D.E. Additional comments on a problem in concurrent programming
control, Comm.ACM 9, 5 (May 1966), %21 - 222

[3] de Hruijn, N.G. Additional commerts an a problem in copcurrent
programming control. Comm.ACM 10, % (March, 1967)

[4] Eisenberg, M.A. and MchGuire, M.R. Further comments on Dijkstra's

concurrent control problem. Comm. ACM 15, 11 (Nov.1972) 999

