
Distributed Deadlock Detection

K. MANI CHANDY and

University of Texas

and

LAURA M. HAAS

IBM

JAYADEV MISRA

Distributed deadlock models are presented for resource and communication deadlocks. Simple
distributed algorithms for detection of these deadlocks are given. We show that all true deadlocks are
detected and that no false deadlocks are reported. In our algorithms, no process maintains global
information; all messages have an identical short length. The algorithms can be applied in distributed
database and other message communication systems.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems--distributed applications; D.4.1 [Operating Systems]: Process Management--deadlocks;
synchronization; D.4.4 [Operating Systems]: Communications Management--network communi-
cation

General Terms: Algorithms

Additional Key Words and Phrases: Distributed deadlock detection, message communication systems,
resource deadlock, communication deadlock

1. INTRODUCTION

In a sys t em of processes which c o m m u n i c a t e on ly wi th a s ingle cen t r a l agent ,
deadlock can be de tec ted easi ly because the cen t r a l agen t has comple te infor-
m a t i o n a b o u t every process. Dead lock de t ec t i on is more diff icult in sys t ems
where the re is no such cen t ra l agen t a n d processes m a y c o m m u n i c a t e d i rec t ly
wi th one ano the r . I f we could a s sume t h a t message c o m m u n i c a t i o n is i n s t a n t a -
neous , or if we could place ce r t a in res t r i c t ions on message delays, dead lock
de tec t ion would become s impler . However , the on ly real is t ic genera l a s s u m p t i o n
we can m a k e is t h a t message de lays are a r b i t r a r y b u t f inite. I n th is paper , we
p r e sen t deadlock de tec t ion a lgo r i t hms for ne tworks of processes in which the re
is no single cen t ra l agen t a n d in which message de lays are a r b i t r a r y b u t f inite.

T h e on ly a s s u m p t i o n we m a k e is t h a t messages s en t by process A to process B
are rece ived by B in the order in which t hey were s en t by A.

This work has been supported by the Air Force Office of Scientific Research under grant AFOSR 81-
0205 and by the University of Texas under a grant from the University Research Institute.
Authors' addresses: K. M. Chandy and J. Misra, Department of Computer Sciences, University of
Texas at Austin, Austin, TX 78712; L. M. Haas, IBM Research, 5600 Cottle Road, San Jose, CA
95193.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0734-2071/83/0500-0144 $00.75

ACM Transactions on Computer Systems, Vol. 1, No. 2, May 1983, Pages 144-156.

Distributed Deadlock Detection 145

We consider two deadlock models in message communicat ion systems: resource
and communicat ion deadlocks. Deadlock detect ion algorithms are given for bo th
models. Most deadlock models in distributed databases are resource deadlock
models [3, 4, 5, 8, 10, 11, 12, 14]; in these models, deadlock arises because processes
may wait permanent ly for resources held by each other. Th e communicat ion
deadlock model is both more abstract and more general; it is applicable to any
message communicat ion system.

In the resource model, a process which requests resources must wait until it
acquires al l the requested resources before it can proceed with its computat ion.
For example, a process may request resources a, b, and c; the process can proceed
only after receiving all three resources- -a , b, and c. Th e communicat ion model
is applicable to arbi t rary resource requests involving the logical processes AND
or OR. For instance, a process may require resources a a n d ei ther b or c; if it
receives a, it continues to wait for ei ther b or c; if it receives b first, it must cancel
its request for c and continue to wait for a. In general in the communicat ion
model, upon receiving any one resource the process sends cancellation messages
if necessary and waits for a new set of resources. Although the deadlock detect ion
algorithm given for the communicat ion model can be applied to the resource
model, the algorithm given in this paper for the resource model is simpler.

Many algorithms in the l i terature are incorrect in tha t they ei ther fail to repor t
some genuine deadlocks or repor t deadlocks where none exist. We show tha t our
algorithms for both models detect all genuine deadlocks and repor t no false ones.

Dijkstra and Scholten presented an algorithm to detect terminat ion in diffusing
computat ions [2]. Diffusing computat ion is a model of distr ibuted computat ions
in which the computat ion is s tar ted by a special process, the ini t iator , which
sends one or more messages. Processes o ther than the initiator can send messages
only after receiving a message. Each process is ready to receive messages from all
other processes at all times. Thus the computat ion terminates only when every
process is idle, waiting for every other process. Our communicat ion model is
intended to support implementat ions of languages such as CSP [7], and therefore
we must allow (1) a process to wait selectively for messages from some (not
necessarily all) other processes, and (2) any process to send a message wi thout
having received a message. As a consequence, we must detect deadlock in our
model when any subse t of processes wait for each other, whereas in the Dijkstra
and Scholten model, terminat ion is detected only when al l processes are waiting
for all others. An algori thm for terminat ion detect ion of diffusing computat ions
in communicating sequential processes appears in [13].

Resource and communicat ion deadlock models are introduced in Section 2. An
algorithm for the resource model is given in Section 3 and one for the communi-
cation model is given in Section 4. Implementa t ion issues are discussed in Sec-
tion 5.

2. A MODEL OF DISTRIBUTED COMPUTATION

A network consists of a set of processes which communicate with one another
exclusively by messages. We adopt the message communicat ion protocol of
Dijkstra and Scholten [2]: any message sent by one process to another is received
correctly after an arbi t rary but finite delay, and message transmissions obey the

ACM Transactions on Computer Systems, Vol. 1, No. 2, May 1983.

146 K.M. Chandy, J. Misra, and L. M. Haas

first-in-first-out rule, tha t is, messages sent by any process Pi to any other process
Pj are received by Pi in the sequence in which they were sent by Pi. These
requirements can be met by using sequence numbers and t ime-outs [9] and by
having every process poll periodically for input messages.

A process Pi can assert only tha t any message it sends to process Pj will be
received eventually, However, process Pi cannot assert tha t Pj has actually
received the message unless it receives some form of acknowledgement from Pj.
In our model, a process never waits to send a message. In CSP [7], by contrast,
a process Pi can send a message to a process Pj only when Pj is willing to receive
the message. The CSP protocol is implemented in our model by having the
message sender first send the message and then wait for an acknowledgment; the
message receiver sends an acknowledgment upon receiving the message. Thus,
the sender can proceed with its computat ion only after the receiver has received
the message.

At any given time, a process is in one of two states: idle or executing. Only
processes tha t are in the executing state can send messages. An executing process
may change its state (to idle) at any time. An idle process may change its s tate
(to executing) only after its requests have been granted; the conditions for this
state change are different for resource and communicat ion models and are
described in the following sections.

2.1 Resource Model

We study the resource deadlock problem as it arises in distr ibuted databases
(DDBs). A D D B consists of resources, controllers, and processes. Associated
with each controller is a set of resources which it manages and a set of const i tuent
processes. A process can only request resources from its own controller, but this
controller may have to communicate with other controllers in order to reserve
the part icular resource. A process cannot execute unless it acquires all the
resources for which it is waiting. A set of processes is said to be deadlocked when
no process in the set can execute because each process requires a resource held
by some other process in the set. Below is a more formal description derived
from [12].

A DDB is implemented by N computers $1 , . . . , SN. A local operating system
or controller Cj at each computer Sj schedules processes, manages resources, and
carries out communication. The re are M transactions T1 T M running on the
DDB. A transact ion is implemented by a collection of processes with at most one
process per computer. Each process is labeled with a tuple P~j where Ti is the
identi ty of the transact ion tha t the process belongs to and Sj is the computer on
which the process runs.

At some stages in a transaction's computat ion it may need to lock resources
(such as files). When a process P~j needs a resource, it sends a request to its
controller Cj. If Cj manages the resource, and if the part icular resource is available,
it may accede to the request immediately; otherwise, the process has to wait to
acquire the requested resource. If the requested resource is managed by some
other controller Cm, then Cj t ransmits the request to process Pin via controller
Cm; now process P ~ requests the resource from its controller C~. When P ~
acquires the requested resource from Cm, it sends a message to Pij (via Cm and

ACM Transact ions on Computer Systems, Vol. 1, No. 2, May 1983.

Distributed Deadlock Detection 147

Cj) stat ing tha t the requested resource has been acquired. Pij m a y proceed with
its computa t ion only after it has received positive replies to all of its requests for
resources. When processes in a t ransact ion Ti no longer need a resource managed
by controller Cm, they communica te with process Pim which is responsible for
releasing the resource to Cm. Messages sent by any controller Ci to ano ther Cj,
arrive sequential ly and in finite time.

A process cannot proceed with its computa t ion until it acquires every resource
tha t it requested. A set of processes is said to be idle when it is waiting to acquire
a resource; it is said to be executing when it is not idle. Thus, if a process never
acquires a requested resource, it is pe rmanen t ly idle. We assume tha t if a single
t ransact ion runs by itself in the DDB, it will t e rmina te in finite t ime and
eventual ly release all resources. When two or more t ransact ions run in parallel,
deadlock m a y arise.

For notat ional simplicity we assign a single identifying subscr ipt (ra ther than
a double subscript) to a process; P~ denotes the i th process. We refer to a process 's
controller and t ransact ion explicitly (ra ther than by using subscripts). T h e use of
a single subscript ra ther than a double subscr ipt does not a l ter the p rob lem at all;
we mere ly r enumber all the processes in the sys tem with 1, 2, 3 A process Pj
is said to be dependent on another process Pk if there exists a sequence (seq) of
processes Pj, Pi(a) Pi(m), Pk, where each process in seq is idle and each
process (except the first) in seq holds a resource for which the previous process
in seq is waiting; Pj is defined to be locally dependent on Pk if all the processes
in seq belong to the same controller. I f Pj is dependent on Pk then P1 mus t remain
idle a t least as long as Pk remains idle. Pj is deadlocked if it is dependent on itself
or on a process tha t is dependent on itself. In ei ther case, deadlock exists only if
there is a cycle of idle processes each dependent on the next process in the cycle.
The goal of resource deadlock detect ion algori thms is to declare tha t deadlock
exists if and only if such cycles exist.

2.2 Communication Model

The communica t ion model is an abs t rac t descript ion of a ne twork of processes
which communica te via messages. The re are no explicit controllers (or resources)
in this model; controllers mus t be implemented by processes; requests for resource
allocation, cancellation, and release mus t be implemented by messages.

Associated with every idle process is a set of processes called its dependent set.
An idle process s tar ts executing upon receiving a message f rom any process in its
dependent set; otherwise, it does not change s ta te or its dependent set. A process
is terminated if it is idle and its associated dependent set is empty . For the
moment , we assume tha t processes do not terminate , fail, or abort; these issues
are considered in Section 5.

Intuitively, a nonem pt y set S of processes is deadlocked if all processes in S are
pe rmanen t ly idle. A process is pe rmanen t ly idle if it never receives a message
f rom any process in its dependent set.

I t is not possible to detect p e r m a n e n t idleness in the following situation.
Process A is waiting for a message f rom process B; process B is current ly
executing and will send a message to process A only upon complet ion of a loop;
process A appears to be pe rmanen t ly idle if process B 's loop computa t ion is

ACM Transactions on Computer Systems, Vol. 1, No. 2, May 1983.

148 K.M. Chandy, J. Misra, and L. M. Haas

nonterminat ing. Detect ion of p e r m a n e n t idleness of this type amoun t s to solving
the halt ing p rob lem and hence is undecidable. We mus t therefore assume in this
si tuation tha t A is not pe rmanen t ly idle since B may send it a message some t ime
in the future. Therefore we adopt the following operat ional definition of deadlock.
a nonempty set of processes S is deadlocked [15] if and only if

1. All processes in S are idle;
2. T h e dependent set of every process in S is a subset of S; and
3. The re are no messages in t ransi t be tween processes in S.

A process is deadlocked if it belongs to some deadlocked set.
A n o n e m p t y set S of processes satisfying the above three conditions mus t

remain idle pe rmanen t ly because (1) an idle process Pi in S can s ta r t executing
only af ter receiving a message f rom some process Pj in its dependent set, (2) every
process Pj in P i ' s dependent set is also in S and cannot send a message while
remaining in the idle state, and (3) there are no messages in t ransi t f rom Pj to Pi,
which implies t ha t Pi will never receive a message f rom any process in its
dependent set.

2.3 A Comparison of Resource and Communication Deadlocks

There are several differences be tween the resource model and the communica t ion
model. One critical difference is t ha t in the communica t ion model, a process can
know the ident i ty of those processes f rom which it mus t receive a message before
it can continue. I f process A needs to receive a message f rom process B, then A
can know tha t it is waiting for B. Thus, the processes have the necessary
information to per form deadlock detect ion if they act collectively. In the resource
model the dependence of one t ransact ion on actions of o ther t ransact ions is not
directly known. All tha t is known is whether a t ransact ion is waiting for a given
resource or whether a t ransact ion holds a given resource. A control ler a t each site
keeps t rack of its resources and only the controllers can deduce tha t one
t ransact ion is waiting for another . Thus the agent of deadlock detect ion in the
two envi ronments is not the same.

The second major difference is tha t in a resource al location model a process
cannot proceed with execution until it receives all the resources for which it is
waiting. In CSP and similar communica t ion models, a process cannot proceed
with its execution until it can communica te with at least one of the processes for
which it is waiting. For instance, a process in CSP executing a guarded c o m m a n d
m a y wait to receive f rom several processes; a guard succeeds and execution
continues when a message is received f rom any one of these processes. The
difference be tween the resource model and the communica t ion model is be tween
waiting for all resources and waiting for any one message; this difference results
in very different a lgori thms for the two models.

In graph- theore t ic terms, deadlock arises in the resource model when there is
a cycle of (idle) dependent processes, whereas in the communica t ion model there
mus t be a knot 1 of (idle) waiting processes.

T h e communica t ion model is more general t han the resource model. In part ic-
ular, the resource model can be s imulated as a communica t ion model. Fur ther -

' A v e r t e x i of a d i r e c t e d g r a p h is a k n o t i f a l l v e r t i c e s t h a t c an be r e a c h e d f rom i c an a lso r e a c h i.

ACM Transactions on Computer Systems, Vol. 1, No. 2, May 1983.

Distributed Deadlock Detection 149

more, the communicat ion model can handle the case where a process waits for a
logical combination of resources, as in resource a and resource b or resource c.

3. DEADLOCK DETECTION IN THE RESOURCE MODEL

A great deal of effort has gone into developing a distr ibuted algori thm for
detecting resource deadlocks in distr ibuted databases (DDBs) [2, 3, 6]. In a recent
paper, Gligor and Shat tuck [3] state tha t "renewed interest in distr ibuted systems
has resulted in the publication of at least ten protocols for deadlock detection.
However, few of these protocols are correct and fewer appear to be practical."
Below, we present a solution [1] to this problem.

In order to determine whether an idle process is deadlocked, its controller
initiates a probe computation. In a probe computat ion, controllers send messages
called probes to one another. Probes are concerned exclusively with deadlock
detection and are distinct f rom resource requests and replies. Probe computat ions
may be initiated for several processes, and the same process may have several
probe computat ions initiated for it in sequence.

A probe is a triple (i, j , k) denoting tha t it belongs to a probe computat ion
initiated by Pi, and tha t this probe is being sent f rom process Pj on one controller
to process Pk on another. The intuitive meaning of a probe(i, j , k) is as follows.
Pj sends probe(i, j , k) to Pk when the following conditions exist: Pi is idle, Pj is
waiting for (i.e., waiting to acquire resources from) Ph, and Pj has determined
tha t Pi is dependent on Pj. This probe may be discarded or accepted by Ph; the
probe is accepted by Pk if and only if Pk is idle, Pk did not know tha t Pi was
dependent on it, and Pk can now deduce tha t Pi is dependent on it. I t follows tha t
if Pi accepts a probe(i, j , i), for any j , then P / i s deadlocked.

3.1 Algorithm

The controller maintains a Boolean array dependentk for each const i tuent process
Pk, where dependentk (i) is true only if Pk's controller knows tha t Pi is dependent
on Pk. If dependenti(i) is true, then Pi is dependent on itself and hence is
deadlocked. Initially, dependent i (j) is set false for all i and j. Th e detailed
algorithm for the probe computat ion is given below.

For initiation of probe computat ion by a controller for a const i tuent idle process
Pi:

if Pi is locally dependent on itself
(i.e., Pi belongs to a deadlocked set of processes,
all on the same controller)

then declare deadlock
else for all P, , Pb such that

(i) Pi is locally dependent on P, , and
(ii) Pa is waiting for Pb, and

(iii) P, , Pb are on different controllers,
send probe(i, a, b).

For a controller on receiving a probe(i, j , k):

if
(i) Pk is idle, and

(ii) dependentk(i) = false, and
(iii) Pk has not replied (positively) to all requests of Pj,

• ACM Transac t ions on C o m p u t e r Sys tems, Vol. 1, No. 2, M a y 1983.

150 K.M. Chandy, J. Misra, and L. M. Haas

then begin
dependents(i) = true;
i fk --- i
then declare that Pi is deadlocked
else for all P~, Pb such that

(i) Pk is locally dependent on P, , and
(ii) Pa is waiting for Pb, and
(iii) Pa and Pb are on different controllers,

send probe(i, a, b).
end

For a controller when a const i tuent process Pk becomes executing:

set dependents (i) = false for all i

The proof tha t a process is actually deadlocked when it is declared to be so
follows from the fact (which may be shown by induction) tha t dependentk (i) is
true only if Pi is dependent on Pk and Pk is idle. Conversely, we can prove tha t Pi
will be declared to be deadlocked if a probe computa t ion for Pi begins when there
exists a cycle of processes Pi, Pj~I) Pj(m~, Pi, where each process in the
sequence is dependent on the next. The proof follows from the inductive hypoth-
esis: dependentj(k)(i) will be set to true and Pj(k) will send a probe to the next
process in the sequence for I _< k _< K, for all K. Detai led proofs are given in [1].

If desired, when a controller detects tha t one of its const i tuent processes is
deadlocked, it can inform (via their controllers) all processes waiting for the
deadlocked process tha t they too are deadlocked.

4. DEADLOCK DETECTION IN THE COMMUNICATION MODEL

We now describe a deadlock detect ion algori thm for the communicat ion model
tha t will allow an idle process to determine whether it is deadlocked.

An idle process can determine whether it is deadlocked by initiating a query
computation when it enters the idle state. The query computa t ion is distinct f rom
the underlying computat ion for which deadlock is being detected. Processes m ay
exchange messages for the query computat ion even in the idle state. This is
because the state is idle only in reference to the underlying computat ion. Th e
process which initiates a query computat ion is called the initiator of tha t query
computation. Several processes may initiate query computat ions and the same
process may initiate query computat ions several times.

The messages in a query computat ion are of the form query(i, m, j , k) and
reply(i, m, j , k), denoting tha t these messages belong to the mth query compu-
tat ion initiated by process Pi and are being sent from P1 to Ph. P~, m, Pj, and Pk
are called the initiator, sequence number, sender, and receiver, respectively.
There will be at most one message of the form query(i, m, j , k); there will be at
most one reply message of the form reply(i, m, k, j) to the query message query
(i ,m , j , k) .

The query computat ions have the following properties.

1. If process Pi is deadlocked when it initiates its mth query computat ion, then
it will receive reply(i, m, j , i) corresponding to every query(i, m, i, j) tha t it sent.
(See Theorem 1 below.)

2. If the initiator, P~, has received reply(i, m, j , i) corresponding to every
query(i, m, i, j) tha t it sent, then it is deadlocked. (See T h e o r e m 2 below.)
ACM Transact ions on Computer Systems, Vol. 1, No. 2, May 1983.

Distributed Deadlock Detection 1 51

In our algorithm each process Pk maintains four arrays of local variables. The
indices of the array range over all processes in the network. Th e local variables
for Pk k = 1, 2, 3 are described below.

Definition 4.1 The variable latest(i) is the largest sequence number m in any
query(i, m, j , k) sent or received by Pk. Initially, latest(i) = 0, for all i.

Definition 4.2 The variable engager(i), where i ~ k, is the identity, say j , of the
process which caused latest(i) to be set to its current value m by sending Pk the
message query(i, m, j , k). The initial value is arbitrary.

Definition 4.3 The variable num(i) is the total number of messages of the form
query(i, m, k, j) sent by Pk, minus the total number of messages of the form
reply(i, m, j , k) received by Pk, where m = latest(i) a n d j is arbitrary. Note tha t
num(i) = 0 means tha t Pk has received replies to all queries of the form (i, m, k,
r) tha t Pk sent, where m = latest(i).

Definition 4.4 The variable wait(i) is true if and only if Pk has been idle
continuously since latest(i) was last updated. Initially wait(i) is false, for all i.

4.1 Algor i thm

An idle process initiates a query computat ion by sending queries to processes in
its dependent set. The basic idea is tha t an idle process on receiving a query
should propagate the query to its dependent set if it has not done so already.
Thus, if there is a sequence of permanent ly idle processes Pi Pj, such tha t
each process in the sequence (except the first) is in the dependent set of the
previous process in the sequence, a query initiated by Pi will be propagated to Pi.

For the remainder of this discussion we consider the action taken by a process
Pk on receiving a query or reply with initiator i, sequence number m, and sender
j. Local variables latest(i), engager(i), num(i) , and wait(i) refer to the variables
of process Pk. If m < latest(i), then Pk discards the message because (by Definition
4.1) Pi must have initiated the query computat ion with sequence number latest(i)
after it initiated the mth query computation; hence Pi could not have been
deadlocked when it initiated the mth query computation. If wait(i) is false when
Pk receives the query/reply , and if m = latest(i), then (by Definition 4.4) Pk has
been in the executing state since it first part icipated in the ruth computat ion
initiated by Pi. In this case, we can assert (by Th eo rem 1 below) tha t Pi was not
deadlocked when it initiated its ruth computation; hence Pk, discards the message.
Thus, Pk discards all messages except those in which rn > latest(i) or those
received when wait(i) is t rue and m = latest(i).

If m > latest(i), then by Definitions 4.1, 4.2, and 4.4, Pk must set latest(i) to m,
engager(i) to j (where P1 is the sender), and wait(i) to true. If Pk receives a reply
in which m = latest(i) and wait(i) is true, then (by Definition 4.3), Pk must
decrement num(i) by 1.

When Pk receives a query in which m > latest(i), it propagates the query to all
processes in its dependent set, sets num(i) to the number of processes in the
dependent set (by Definition 4.3), and updates o ther local variables as discussed
earlier. When Pk initiates a query computat ion it does so by acting as though it
had just received a query in which m > latest(k).

Next, we derive the conditions under which Pk sends replies. If wait(i) is t rue
when Pk receives a query in which m -- latest(i) , it replies to the query

ACM Transact ions on Computer Systems, Vol. 1, No. 2, May 1983.

152 K.M. Chandy, J. Misra, and L. M. Haas

immediately. If wait(i) is false when Pk receives a query in which m = latest(i) ,
or wait(i) is arbi t rary and m < latest(i), then Pk discards the query and never
replies to this query. The interesting quest ion is when should Pk reply to a query
in which m > latest(i)? By Definitions 4.1 and 4.2, such a query must have been
sent by engager(i). The answer to this question is derived by extending the
conditions in Dijkstra and Schol ten [2]; Pk replies to engager(i) only if wait(i) is
true and num(i) has been reduced to zero (i.e., Pk has received replies to all
queries with initiator Pi and sequence number m tha t it sent, and Pk has been
continuously idle since it first par t ic ipated in this query computat ion) . This
scheme for replying to engagers is necessary for T h e o r e m 2 (given below): if the
initiator receives replies to all the queries it sends to its dependent set, then the
initiator is deadlocked. The detailed description of the algori thm is given below.

For an idle process Pi to initiate a query computation:

begin
latest(i) := latest(i) + 1; wait(i) = true;
send query(i, latest(i), i, j) to all processes Pj in
Pi's dependent set S; num(i) := number of elements in S

e n d

For an executing process Pk: On becoming executing, set wait(i) = false, for all
i. Discard all queries and replies received while in executing state.

For an idle process Pk, upon receiving query(i, m, j , k):

if m > latest(i)
t h e n begin

latest(i) := m; engager(i) :=j; wait(i) := true;
for all processes Pr in Pk's dependent set S
send query(i, m, k, r);
num(i) := number of processes in S

e n d

else if wait(i) a n d m = latest(i)
t h e n send reply(i, m, k,j) to Pj

Upon receiving reply(i, m, r, k):

if m = latest(i) and wait(i)
t h e n begin

num(i) := num(i) - 1;
if num(i) = 0
t h e n i f i = k

t h e n declare Pk deadlocked
else send reply(i, m, k,j) to Pj
where j = engager(i)

e n d

4.2 Proofs

THEOREM 1. I f the initiator of a query computation is deadlocked when it
initiates the computation, it will (eventually) declare itself deadlocked.

PROOF. Consider a set S of processes, including the initiator, which is dead-
locked at the instant at which the query computa t ion is initiated. Processes in S

ACM Transactions on Computer Systems, Vol. 1, No. 2, May 1983.

Distributed Deadlock Detection 153

cannot change their dependent sets and there are no messages in transi t between
processes in S. Hence the problem is equivalent to tha t considered by Dijkstra
and Scholten [2] where "queries" correspond to their "messages," and their proof
applies here. []

In the following we restrict our a t tent ion to a single query computat ion, say
the mth initiated by process Pi. Thus queries, replies, engagers, and so forth,
refer to this specific computation.

LEMMA 1. Suppose a process Pk sends a reply to its engager and subsequent ly
becomes execut ing at some time, say t. Then there exists a process Pr in Pk's
dependent set (where the dependen t set is de termined at the po in t at which Pk
replies to its engager) which receives a query and subsequent ly becomes exe-
cuting at some t ' < t.

PROOF. In order for Pk to reply to its engager, it must have received replies
from all processes in its dependent set. In order for Pk to become executing, it
must have received a message from some process in its dependent set, say Pr.
Since Pk became executing after sending the reply to its engager, it must have
received the message from Pr after the reply from Pr; hence, Pr must have sent
the message after the reply. Therefore , the sequence of events must be as follows.
P~ gets the query from Pk, replies to it, becomes executing, and sends the message
to Pk causing it to become executing. []

THEOREM 2. I f the ini t iator o f a query computat ion declares i tsel f
"deadlocked," then it belongs to a dead locked set.

PROOF. Let S be the set of processes including the initiator which received
queries during this query computation. We will show tha t S is a deadlocked set.
Every process replying to its engager in this computat ion must have received
replies for all queries tha t it sent. F rom this fact, the following inductive hypoth-
esis can be established. If the initiator declares itself deadlocked, a reply must
have been received to the q th query in the computat ion, for q = 1, 2
Therefore, every process in S replies to its engager in the computation. Hence,
from Lemma 1, it follows tha t if process Pk in S becomes executing at t ime t after
receiving a query, then some process Pj in S becomes executing at t ime t ' af ter
receiving a query, and t" < t. Using this inductively, it follows tha t no process in
S can become executing after receiving a query, and hence S is a deadlocked
set. []

THEOREM 3. A t least one process in every dead locked set wil l report
"deadlocked" i f every process init iates a new query computat ion whenever it
becomes idle.

PROOF. From Theo rem 1, the last process to become idle in a deadlocked set
will repor t "deadlocked." []

As in the resource model, any process detecting deadlock can inform others
tha t it is deadlocked.

ACM Transact ions on Computer Systems, Vol. 1, No. 2, May 1983.

1 54 K.M. Chandy, J. Misra, and L. M. Haas

4.3 Example

The resource model is so simple tha t we do not give an example for it. We do give
an example for the communication model. A more elaborate example is found in
[6]. In this example, we use subscripts to distinguish local variables belonging to
different processes. For instance, engager/(j) is the value of engager(j) in process
Pi.

Consider a network consisting of four processes. The network's initial state and
a possible execution sequence is given below.

Initial State
Process 1: idle, waiting for process 2 or process 3
Process 2: idle, waiting for process 4
Process 3: idle, waiting for process 1 or process 4
Process 4: executing

Execution Sequence

Time Action

1 Process 1 initiates its first query computation.
Process 1 sends query(l , 1, 1, 2) and query(l , 1, 1, 3).

2 Process 2 receives query(l , 1, 1, 2).
Engager2(1) :-- 1.
Process 2 sends query(l , 1, 2, 4).

3 Process 3 receives query(l , 1, 1, 3).
Engagera(1) := 1.
Process 3 sends query(l , 1, 3, 1) and query(l , 1, 3, 4).

4 Process 4 sends a message to process 3.
5 Process 1 receives query(l , 1, 3, 1).

Process 1 sends reply(i,1,1,3).
6 Process 4 changes state from executing to idle and waits for process 2.

Note tha t processes 2 and 4 are now deadlocked.

7 Process 4 receives query(l , 1, 2, 4).
Engager4(1) := 2; latest4(1):= 1; wait4 (1):= true.
Process 4 sends query(l , 1, 4, 2); num_4 (1) := 1.

8 Process 4 receives query(l , 1, 3, 4).
Since m = latest4 (1) and wait4 (1) = true.
Process 4 sends reply(l, 1, 4, 3).

9 Process 3 receives message from process 4 (sent at t ime 4).
Process 3 becomes executing, sets wait3 (1) := false.

10 Process 4 initiates its first query computation.
Process 4 sends query(4, 1, 4, 2); num4 (4) := 1;
latest4 (4) := 1; wait4 (4) := true.

11 Process 2 receives query(l , 1, 4, 2) (sent at t ime 7).
Process 2 sends reply(l, 1, 2, 4).

12 Process 3 receives reply(l, 1, 4, 3) (sent at t ime 8).
Process 3 is executing. Wait3 (1) is false.
Thus process 3 will never send reply(l, 1, 3, 1) and process 1 will not
declare itself deadlocked.

ACM Transact ions on Computer Systems, Vol. 1, No. 2, May 1983.

Distributed Deadlock Detection 155

13 Process 2 receives query(4, 1, 4, 2) (sent at t ime 10).
Engager2 (4) := 4i; wait2 (4) := true.
Process 2 sends query(4, 1, 2, 4); num2(4) := 1.

14 Process 4 receives reply(l , 1, 2, 4).
Wait4 (1) is t rue and now nun~ (1) is 0; engager4(1) = 2.
Process 4 sends reply(l , 1, 4, 2).

15 Process 4 receives query(4, 1, 4, 2). Since latest4 (4) = 1, it sends
reply(4, 1, 4, 2).

16 Process 2 receives reply(4, 1, 4, 2). Since wait2(4) = true, it reduces
num2 (4) from 1 to 0. Since engager2 (4) = 4, it sends reply(4, 1, 2, 4).

17 Process 4 receives reply(4, 1, 2, 4). Since wait4(4) = true, it reduces
num4 (4) from 1 to 0 and declares itself deadlocked.

5. NOTES ON THE ALGORITHMS

Two algorithms have been proposed for the detect ion of deadlocks. Th e first
algorithm, applicable to resource deadlocks, is simpler, involving only one type of
message (probes) for deadlock detection. Th e second algorithm is applicable to a
more general class of problems and therefore involves two types of messages
(query and reply). These algorithms are easy to implement since in ei ther case,
each message (probe, query, and reply) is of fixed length and requires a few
simple computat ional steps.

These algorithms seem at tract ive for reasons of performance as well as cor-
rectness, since the overhead of deadlock detect ion computat ions and the message
traffic associated with deadlock detect ion is generated pr imar i l y when processes
are idle (i.e., they have nothing to do and nothing to send). Fur thermore ,
executing processes need only discard the messages associated with a deadlock
detection computation. Every single deadlock detect ion computat ion involves no
more than e probes in resource models or e queries and replies in communicat ion
models, where e is the number of communicat ing process pairs in the network. In
the worst case, where the network of N processes is fully connected, e = N × (N

- 1). Normally, e, and hence the number of these messages, will be much less.
For example, in the case where each of the N processes has a dependent set of
size k or less, e _< k × N.

To reduce the number of deadlock detect ion computat ions which are initiated,
a process may initiate one only if it has been idle continuously for some time T,
where T is a performance parameter . If the process leaves the idle state before T,
we have avoided initiating such a computation. Time-outs may be used in a
similar manner for probe, query, and reply propagation. Note tha t since every
process could initiate deadlock detect ion computat ions one or more times, proper
choice of T is critical in reducing the number of these computations. Issues
related to this are discussed in [5].

We can ensure tha t no process has a backlog of an unbounded number of
queries or probes by requiring a process to receive acknowledgments to earlier
queries or probes from a specific process before sending the next query or probe
to tha t process.

Our algorithms require tha t all processes which are permanent ly idle (including
terminated, failed, or abor ted processes) reply to queries and propagate the probe.

ACM Transactions on Computer Systems, Vol. 1, No. 2, May 1983.

156 K.M. Chandy, J. Misra, and L. M. Haas

If failure prevents such a reply/probe from being sent, the failure must be
detected by other means and the reply/probe sent. Our algorithm further requires
that the computation (for which deadlock is being detected) be correct. In
particular, if the dependent set of a process is miscalculated, the deadlock
detection algorithm may not function.

ACKNOWLEDGMENTS

We are particularly grateful to E. W. Dijkstra and C. S. Scholten for their
encouragement and advice. In particular, the proof of Theorem 2 was suggested
by Scholten. We were helped greatly by comments from G. Andrews, N. Francez,
C. A. R. Hoare, Anita Jones, and F. Schneider. Special thanks to the referees for
their comments.

REFERENCES
1. CHANDY, K.M., AND MISRA, J. A distributed algorithm for detecting resource deadlocks in

distributed systems. In Proc. A CM SIGA CT-SIGOPS Syrup. Principles of Distributed Computing
(Ottawa, Canada, August 18-20, 1982), ACM, New York, 1982, pp. 157-164.

2. DIJKSTRA, n.w., AND SCHOLTEN, C.S. Termination detection for diffusing computations. Inf.
Process. Lett. 11, 1 (Aug. 1980), 1-4.

3. GLIGOR, V.D., AND SHATTUCK, S.H. Deadlock detection in distributed systems. I E E E Trans.
Softw. Eng. SE-6, 5 (Sept. 1980), 435-440.

4. GOLDMAN, B. Deadlock detection in computer networks. Tech. Rep. MIT-LCS-TR185, Massa-
chusetts Institute of Technology, Cambridge, Mass., Sept. 1977.

5. GRAY, J.N. Notes on database operating systems. In Operating Systems: An Advanced Course,
vol. 60, Lecture Notes in Computer Science, Springer-Verlag, New York 1978, pp. 393-481.

6. HAAS, L.M. Two approaches to deadlock in distributed systems. Ph.d. dissertation, Computer
Science Dept., Univ. of Texas at Austin, July 1981.

7. HOARE, C.A.R. Communicating sequential processes. Commun. ACM21, 8 (Aug. 1978), 666-677.
8. ISLOOR, S.S., AND MARSLAND, T.A. An effective 'on-line' deadlock detection technique for

distributed database management systems. In Proc. COMPSAC 1978, IEEE, New York, pp. 283-
288.

9. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. A C M
21, 7 (July 1978), 558-565.

10. LOMET, D.B. Coping with deadlock in distributed systems. Res. Rep. RC 7460 (#32196), IBM,
T. J. Watson Research Center, Yorktown Heights, N.Y., Dec. 1978.

11. MAHOUD, S.A., AND RIORDON, J.S. Software controlled access to distributed databases. INFOR
15, 1 (Feb. 1977), 22-36.

12. MENASCE, D., AND MUNTZ, R. Locking and deadlock detection in distributed databases. I E E E
Trans. Softw. Eng. SE-5, 3 (May 1979), 195-202.

13. MISRA, J., AND CHANDY, K.M. Termination detection of diffusing computations in communi-
cating sequential processes. A C M Trans. Program. Lang. Syst. 4, 1 (Jan. 1982), 37-43.

14. OBERMARCK, R. Distributed deadlock detection algorithm. A C M Trans. Database Syst. 7, 2
(June 1982), 187-208.

15. CHANDY, K.M., AND MISRA, J. Deadlock absence proofs for networks of communicating pro-
cesses. Inf. Process. Lett. 9, 4 (Nov. 1979), 185-189.

Received May 1981; revised August 1982; accepted November 1982

ACM Transactions on Computer Systems, Vol. 1, No. 2, May 1983.

