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1. INTRODUCTION 

In  a sys t em of processes  which  c o m m u n i c a t e  on ly  wi th  a s ingle  cen t r a l  agent ,  
deadlock can  be de tec ted  easi ly  because  the  cen t r a l  agen t  has  comple te  infor-  
m a t i o n  a b o u t  every  process.  Dead lock  de t ec t i on  is more  diff icult  in  sys t ems  
where  the re  is no such  cen t ra l  agen t  a n d  processes  m a y  c o m m u n i c a t e  d i rec t ly  
wi th  one ano the r .  I f  we could  a s sume  t h a t  message  c o m m u n i c a t i o n  is i n s t a n t a -  
neous ,  or if we could place ce r t a in  res t r i c t ions  on  message  delays,  dead lock  
de tec t ion  would  become  s impler .  However ,  the  on ly  real is t ic  genera l  a s s u m p t i o n  
we can  m a k e  is t h a t  message  de lays  are a r b i t r a r y  b u t  f inite.  I n  th is  paper ,  we 
p r e sen t  deadlock de tec t ion  a lgo r i t hms  for ne tworks  of processes  in  which  the re  
is no single cen t ra l  agen t  a n d  in  which  message  de lays  are a r b i t r a r y  b u t  f inite.  

T h e  on ly  a s s u m p t i o n  we m a k e  is t h a t  messages  s en t  by  process  A to process  B 
are rece ived by  B in  the  order  in  which  t hey  were s en t  by  A. 
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We consider two deadlock models in message communicat ion systems: resource 
and communicat ion deadlocks. Deadlock detect ion algorithms are given for bo th  
models. Most  deadlock models in distributed databases are resource deadlock 
models [3, 4, 5, 8, 10, 11, 12, 14]; in these models, deadlock arises because processes 
may wait permanent ly  for resources held by each other. Th e  communicat ion 
deadlock model is both  more abstract  and more general; it is applicable to any 
message communicat ion system. 

In the resource model, a process which requests resources must  wait until  it 
acquires al l  the requested resources before it can proceed with its computat ion.  
For  example, a process may  request  resources a, b, and c; the process can proceed 
only after  receiving all three  resources- -a ,  b, and c. Th e  communicat ion model  
is applicable to arbi t rary resource requests involving the logical processes AND 
or OR. For  instance, a process may  require resources a a n d  ei ther  b or c; if it 
receives a, it continues to wait for ei ther  b or c; if it receives b first, it must  cancel 
its request  for c and continue to wait for a. In general in the communicat ion 
model, upon receiving any one resource the process sends cancellation messages 
if necessary and waits for a new set of resources. Although the deadlock detect ion 
algorithm given for the communicat ion model  can be applied to the resource 
model, the algorithm given in this paper  for the resource model  is simpler. 

Many  algorithms in the l i terature are incorrect  in tha t  they ei ther  fail to repor t  
some genuine deadlocks or repor t  deadlocks where none exist. We show tha t  our  
algorithms for both  models detect  all genuine deadlocks and repor t  no false ones. 

Dijkstra and Scholten presented an algorithm to detect  terminat ion in diffusing 
computat ions [2]. Diffusing computat ion is a model  of distr ibuted computat ions  
in which the computat ion is s tar ted by a special process, the ini t iator ,  which 
sends one or more messages. Processes o ther  than  the initiator can send messages 
only after  receiving a message. Each process is ready to receive messages from all 
other  processes at  all times. Thus  the computat ion terminates  only when every 
process is idle, waiting for every other  process. Our communicat ion model  is 
intended to support  implementat ions of languages such as CSP [7], and therefore  
we must  allow (1) a process to wait selectively for messages from some  (not 
necessarily all) other  processes, and (2) any process to send a message wi thout  
having received a message. As a consequence, we must  detect  deadlock in our  
model when any subse t  of processes wait for each other,  whereas in the Dijkstra 
and Scholten model, terminat ion is detected only when al l  processes are waiting 
for all others. An algori thm for terminat ion detect ion of diffusing computat ions 
in communicating sequential processes appears in [13]. 

Resource and communicat ion deadlock models are introduced in Section 2. An 
algorithm for the resource model  is given in Section 3 and one for the communi-  
cation model is given in Section 4. Implementa t ion issues are discussed in Sec- 
tion 5. 

2. A MODEL OF DISTRIBUTED COMPUTATION 

A network consists of a set of processes which communicate  with one another  
exclusively by messages. We adopt  the message communicat ion protocol  of 
Dijkstra and Scholten [2]: any message sent by one process to another  is received 
correctly after an arbi t rary  but  finite delay, and message transmissions obey the 
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first-in-first-out rule, tha t  is, messages sent by any process Pi to any other  process 
Pj are received by Pi in the sequence in which they  were sent by Pi. These  
requirements  can be met  by using sequence numbers  and t ime-outs [9] and by 
having every process poll periodically for input  messages. 

A process Pi can assert only tha t  any message it sends to process Pj will be 
received eventually, However,  process Pi cannot  assert tha t  Pj has actually 
received the message unless it receives some form of acknowledgement  from Pj. 
In our model, a process never  waits to send a message. In CSP [7], by contrast,  
a process Pi can send a message to a process Pj only when Pj is willing to receive 
the message. The  CSP protocol is implemented in our  model  by having the 
message sender first send the message and then  wait for an acknowledgment;  the 
message receiver sends an acknowledgment  upon receiving the message. Thus,  
the sender can proceed with its computat ion only after  the receiver has received 
the message. 

At any given time, a process is in one of two states: idle or executing. Only 
processes tha t  are in the executing state can send messages. An executing process 
may  change its state (to idle) at  any time. An idle process may  change its s tate  
(to executing) only after  its requests  have been granted; the conditions for this 
state change are different for resource and communicat ion models and are 
described in the following sections. 

2.1 Resource Model 

We study the resource deadlock problem as it arises in distr ibuted databases 
(DDBs). A D D B  consists of resources, controllers, and processes. Associated 
with each controller is a set of resources which it manages and a set of const i tuent  
processes. A process can only request  resources from its own controller, but  this 
controller may  have to communicate  with other  controllers in order  to reserve 
the part icular  resource. A process cannot  execute unless it acquires all the 
resources for which it is waiting. A set of processes is said to be deadlocked when 
no process in the set can execute because each process requires a resource held 
by some other  process in the set. Below is a more  formal description derived 
from [12]. 

A DDB  is implemented by N computers $1 , . . . ,  SN. A local operating system 
or controller Cj at  each computer  Sj schedules processes, manages resources, and 
carries out communication.  The re  are M transactions T1 . . . . .  T M  running on the 
DDB. A transact ion is implemented by a collection of processes with at  most  one 
process per computer.  Each  process is labeled with a tuple P~j where Ti is the 
identi ty of the transact ion tha t  the process belongs to and Sj is the computer  on 
which the process runs. 

At some stages in a transaction's  computat ion it may  need to lock resources 
(such as files). When a process P~j needs a resource, it sends a request  to its 
controller Cj. If  Cj manages the resource, and if the part icular  resource is available, 
it may  accede to the request  immediately; otherwise, the process has to wait to 
acquire the requested resource. If the requested resource is managed by some 
other  controller Cm, then  Cj t ransmits  the request  to process Pin via controller  
Cm; now process P ~  requests the resource from its controller  C~. When  P ~  
acquires the requested resource from Cm, it sends a message to Pij (via Cm and 
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Cj) stat ing tha t  the requested resource has  been acquired. Pij m a y  proceed with 
its computa t ion  only after  it has  received positive replies to all of its requests  for 
resources. When  processes in a t ransact ion Ti no longer need a resource managed  
by controller Cm, they  communica te  with process Pim which is responsible for 
releasing the resource to Cm. Messages sent  by  any  controller  Ci to ano ther  Cj, 
arrive sequential ly and in finite time. 

A process cannot  proceed with its computa t ion  until  it acquires every resource 
tha t  it requested.  A set  of processes is said to be idle when it is waiting to acquire 
a resource; it is said to be executing when it is not  idle. Thus,  if a process never  
acquires a requested resource, it is pe rmanen t ly  idle. We assume tha t  if a single 
t ransact ion runs by itself in the  DDB,  it will t e rmina te  in finite t ime and 
eventual ly release all resources. When  two or more  t ransact ions  run  in parallel, 
deadlock m a y  arise. 

For  notat ional  simplicity we assign a single identifying subscr ipt  ( ra ther  than  
a double subscript)  to a process; P~ denotes  the i th process. We refer to a process 's  
controller and t ransact ion explicitly ( ra ther  than  by  using subscripts).  T h e  use of 
a single subscript  ra ther  than  a double subscr ipt  does not  a l ter  the p rob lem at  all; 
we mere ly  r enumber  all the processes in the sys tem with 1, 2, 3 . . . . .  A process Pj 
is said to be dependent on another  process Pk if there  exists a sequence (seq) of 
processes Pj,  Pi(a) . . . . .  Pi(m), Pk, where each process in seq is idle and each 
process (except the first) in seq holds a resource for which the  previous process 
in seq is waiting; Pj is defined to be locally dependent on Pk if all the processes 
in seq belong to the same controller. I f  Pj is dependent  on Pk then  P1 mus t  remain  
idle a t  least  as long as Pk remains  idle. Pj is deadlocked if it is dependent  on itself 
or on a process tha t  is dependent  on itself. In  ei ther  case, deadlock exists only if 
there is a cycle of idle processes each dependent  on the next  process in the cycle. 
The  goal of resource deadlock detect ion algori thms is to declare tha t  deadlock 
exists if and only if such cycles exist. 

2.2 Communication Model 

The  communica t ion  model  is an abs t rac t  descript ion of a ne twork of processes 
which communica te  via messages.  The re  are no explicit controllers (or resources) 
in this model; controllers mus t  be implemented  by processes; requests  for resource 
allocation, cancellation, and release mus t  be implemented  by  messages.  

Associated with every idle process is a set of processes called its dependent set. 
An idle process s tar ts  executing upon receiving a message f rom any process in its 
dependent  set; otherwise, it does not  change s ta te  or its dependent  set. A process 
is terminated if it is idle and its associated dependent  set  is empty .  For  the 
moment ,  we assume tha t  processes do not  terminate ,  fail, or abort;  these issues 
are considered in Section 5. 

Intuitively,  a nonem pt y  set  S of processes is deadlocked if all processes in S are 
pe rmanen t ly  idle. A process is pe rmanen t ly  idle if it never  receives a message 
f rom any process in its dependent  set. 

I t  is not  possible to detect  p e r m a n e n t  idleness in the  following situation. 
Process  A is waiting for a message f rom process B; process B is current ly  
executing and will send a message to process A only upon complet ion of a loop; 
process A appears  to be pe rmanen t ly  idle if process B 's  loop computa t ion  is 
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nonterminat ing.  Detect ion of p e r m a n e n t  idleness of this type amoun t s  to solving 
the halt ing p rob lem and hence is undecidable.  We mus t  therefore  assume in this 
si tuation tha t  A is not  pe rmanen t ly  idle since B may send it a message some t ime 
in the future. Therefore  we adopt  the following operat ional  definition of deadlock. 
a nonempty  set of processes S is deadlocked [15] if and only if 

1. All processes in S are idle; 
2. T h e  dependent  set  of every process in S is a subset  of  S; and 
3. The re  are no messages  in t ransi t  be tween processes in S. 

A process is deadlocked if it belongs to some deadlocked set. 
A n o n e m p t y  set  S of processes satisfying the above three  conditions mus t  

remain  idle pe rmanen t ly  because (1) an idle process Pi in S can s ta r t  executing 
only af ter  receiving a message f rom some process Pj in its dependent  set, (2) every 
process Pj in P i ' s  dependent  set  is also in S and cannot  send a message  while 
remaining in the idle state, and (3) there  are no messages  in t ransi t  f rom Pj to Pi,  
which implies t ha t  Pi will never  receive a message  f rom any  process in its 
dependent  set. 

2.3 A Comparison of Resource and Communication Deadlocks 

There  are several  differences be tween the  resource model  and the communica t ion  
model. One critical difference is t ha t  in the communica t ion  model,  a process  can 
know the ident i ty  of those processes f rom which it mus t  receive a message  before 
it can continue. I f  process A needs to receive a message  f rom process  B, then  A 
can know tha t  it is waiting for B. Thus,  the processes have  the necessary 
information to per form deadlock detect ion if they  act  collectively. In the  resource 
model  the dependence of one t ransact ion on actions of  o ther  t ransact ions  is not  
directly known. All tha t  is known is whether  a t ransact ion  is waiting for a given 
resource or whether  a t ransact ion holds a given resource.  A control ler  a t  each site 
keeps  t rack of its resources and only the controllers can deduce tha t  one 
t ransact ion is waiting for another .  Thus  the agent  of deadlock detect ion in the  
two envi ronments  is not  the same. 

The  second major  difference is tha t  in a resource al location model  a process 
cannot  proceed with execution until  it receives all the resources  for which it is 
waiting. In CSP and similar communica t ion  models,  a process cannot  proceed 
with its execution until  it can communica te  with at least one of the  processes for 
which it is waiting. For  instance, a process in CSP executing a guarded c o m m a n d  
m a y  wait  to receive f rom several  processes; a guard succeeds and execution 
continues when a message is received f rom any one of these processes. The  
difference be tween the resource model  and the communica t ion  model  is be tween  
waiting for all resources and waiting for any one message; this difference results  
in very  different a lgori thms for the two models.  

In  graph- theore t ic  terms,  deadlock arises in the  resource model  when  there  is 
a cycle of (idle) dependent  processes, whereas  in the communica t ion  model  there  
mus t  be a knot 1 of (idle) waiting processes. 

T h e  communica t ion  model  is more  general t han  the  resource model.  In part ic-  
ular, the resource model  can be s imulated as a communica t ion  model.  Fur ther -  

' A v e r t e x  i of  a d i r e c t e d  g r a p h  is a k n o t  i f  a l l  v e r t i c e s  t h a t  c an  be  r e a c h e d  f rom i c an  a lso  r e a c h  i. 
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more, the communicat ion model can handle the case where a process waits for a 
logical combination of resources, as in resource a and resource b or resource c. 

3. DEADLOCK DETECTION IN THE RESOURCE MODEL 

A great deal of effort has gone into developing a distr ibuted algori thm for 
detecting resource deadlocks in distr ibuted databases (DDBs) [2, 3, 6]. In a recent  
paper, Gligor and Shat tuck  [3] state tha t  "renewed interest  in distr ibuted systems 
has resulted in the publication of at  least ten protocols for deadlock detection. 
However,  few of these protocols are correct  and fewer appear  to be practical." 
Below, we present  a solution [1] to this problem. 

In order to determine whether  an idle process is deadlocked, its controller  
initiates a probe computation. In a probe computat ion,  controllers send messages 
called probes to one another.  Probes are concerned exclusively with deadlock 
detection and are distinct f rom resource requests and replies. Probe computat ions 
may be initiated for several processes, and the same process may  have several 
probe computat ions initiated for it in sequence. 

A probe is a triple (i, j ,  k) denoting tha t  it belongs to a probe computat ion 
initiated by Pi, and tha t  this probe is being sent f rom process Pj on one controller 
to process Pk on another.  The  intuitive meaning of a probe(i, j ,  k) is as follows. 
Pj sends probe(i, j ,  k) to Pk when the following conditions exist: Pi is idle, Pj is 
waiting for (i.e., waiting to acquire resources from) Ph, and Pj has determined 
tha t  Pi is dependent  on Pj. This  probe may  be discarded or accepted by Ph; the 
probe is accepted by Pk if and only if Pk is idle, Pk did not  know tha t  Pi was 
dependent  on it, and Pk can now deduce tha t  Pi is dependent  on it. I t  follows tha t  
if Pi accepts a probe(i, j ,  i), for any j ,  then  P / i s  deadlocked. 

3.1 Algorithm 

The  controller maintains a Boolean array dependentk for each const i tuent  process 
Pk, where dependentk (i) is true only if Pk's controller knows tha t  Pi is dependent  
on Pk. If  dependenti( i )  is true, then  Pi is dependent  on itself and hence is 
deadlocked. Initially, dependent i ( j )  is set false for all i and j.  Th e  detailed 
algorithm for the probe computat ion is given below. 

For  initiation of probe computat ion by a controller for a const i tuent  idle process 
Pi: 

if  Pi is locally dependent on itself 
(i.e., Pi belongs to a deadlocked set of processes, 
all on the same controller) 

then declare deadlock 
else for all P, ,  Pb such that 

(i) Pi is locally dependent on P, ,  and 
(ii) Pa is waiting for Pb, and 

(iii) P, ,  Pb are on different controllers, 
send probe(i, a, b). 

For  a controller on receiving a probe(i, j ,  k): 

if 
(i) Pk is idle, and 

(ii) dependentk(i) = false, and 
(iii) Pk has not replied (positively) to all requests of Pj, 
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then begin 
dependents(i) = true; 
i fk  --- i 
then declare that Pi is deadlocked 
else for all P~, Pb such that 

(i) Pk is locally dependent on P, ,  and 
(ii) Pa is waiting for Pb, and 
(iii) Pa and Pb are on different controllers, 

send probe(i, a, b). 
end 

For a controller when a const i tuent  process Pk becomes executing: 

set dependents (i) = false for all i 

The  proof  tha t  a process is actually deadlocked when it is declared to be so 
follows from the fact (which may  be shown by induction) tha t  dependentk (i) is 
true only if Pi is dependent  on Pk and Pk is idle. Conversely, we can prove tha t  Pi 
will be declared to be deadlocked if a probe computa t ion  for Pi begins when there  
exists a cycle of processes Pi, Pj~I) . . . . .  Pj(m~, Pi, where each process in the 
sequence is dependent  on the next. The  proof  follows from the inductive hypoth-  
esis: dependentj(k)(i) will be set to true and Pj(k) will send a probe to the next  
process in the sequence for I _< k _< K, for all K. Detai led proofs are given in [1]. 

If desired, when a controller detects  tha t  one of its const i tuent  processes is 
deadlocked, it can inform (via their  controllers) all processes waiting for the 
deadlocked process tha t  they  too are deadlocked. 

4. DEADLOCK DETECTION IN THE COMMUNICATION MODEL 

We now describe a deadlock detect ion algori thm for the communicat ion model  
tha t  will allow an idle process to determine whether  it is deadlocked. 

An idle process can determine whether  it is deadlocked by initiating a query 
computation when it enters the idle state. The  query computa t ion  is distinct f rom 
the underlying computat ion for which deadlock is being detected.  Processes m ay  
exchange messages for the query computat ion even in the idle state. This  is 
because the state is idle only in reference to the underlying computat ion.  Th e  
process which initiates a query computat ion is called the initiator of tha t  query  
computation.  Several  processes may  initiate query computat ions  and the same 
process may  initiate query computat ions  several times. 

The  messages in a query computat ion are of the form query(i,  m, j ,  k) and 
reply(i, m, j ,  k), denoting tha t  these messages belong to the mth query compu- 
tat ion initiated by process Pi and are being sent from P1 to Ph. P~, m, Pj, and Pk 
are called the initiator, sequence number,  sender, and receiver, respectively. 
There  will be at  most  one message of the form query(i,  m, j ,  k); there  will be at  
most  one reply message of the form reply(i, m, k, j )  to the query message query 
( i ,m , j , k ) .  

The  query computat ions have the following properties.  

1. If process Pi is deadlocked when it initiates its mth  query  computat ion,  then  
it will receive reply(i, m, j ,  i) corresponding to every  query(i,  m, i, j )  tha t  it sent. 
(See Theorem 1 below.) 

2. If the initiator, P~, has received reply(i, m, j ,  i) corresponding to every 
query(i,  m, i, j )  tha t  it sent, then  it is deadlocked. (See T h e o r e m  2 below.) 
ACM Transact ions on Computer  Systems, Vol. 1, No. 2, May  1983. 
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In our algorithm each process Pk maintains four arrays of local variables. The  
indices of the array range over all processes in the network. Th e  local variables 
for Pk k = 1, 2, 3 . . . .  are described below. 

Definition 4.1 The  variable latest(i)  is the largest sequence number  m in any 
query(i,  m, j ,  k) sent or received by Pk. Initially, latest(i)  = 0, for all i. 

Definition 4.2 The  variable engager(i),  where i ~ k, is the identity, say j ,  of the 
process which caused latest(i)  to be set to its current  value m by sending Pk the 
message query(i,  m, j ,  k). The  initial value is arbitrary.  

Definition 4.3 The  variable num(i)  is the total  number  of messages of the form 
query(i, m, k, j )  sent by Pk, minus the total  number  of messages of the form 
reply(i, m, j ,  k) received by Pk, where m = latest(i)  a n d j  is arbitrary.  Note  tha t  
num(i)  = 0 means tha t  Pk has received replies to all queries of the form (i, m, k, 
r) tha t  Pk sent, where m = latest(i).  

Definition 4.4 The  variable wait(i) is true if and only if Pk has been idle 
continuously since latest(i)  was last updated.  Initially wait(i) is false, for all i. 

4.1 Algor i thm 

An idle process initiates a query computat ion by sending queries to processes in 
its dependent  set. The  basic idea is tha t  an idle process on receiving a query 
should propagate the query to its dependent  set if it has not  done so already. 
Thus,  if there  is a sequence of permanent ly  idle processes Pi . . . . .  Pj, such tha t  
each process in the sequence (except the first) is in the dependent  set of the 
previous process in the sequence, a query initiated by Pi will be propagated to Pi. 

For the remainder  of this discussion we consider the action taken by a process 
Pk on receiving a query or reply with initiator i, sequence number  m, and sender 
j. Local variables latest(i),  engager(i),  num(i) ,  and wait(i) refer to the variables 
of process Pk. If m < latest(i),  then Pk discards the message because (by Definition 
4.1) Pi must  have initiated the query computat ion with sequence number  latest(i)  
after it initiated the mth query computation;  hence Pi could not  have been 
deadlocked when it initiated the mth query computation.  If wait(i) is false when 
Pk receives the query/reply ,  and if m = latest(i),  then  (by Definition 4.4) Pk has 
been in the executing state since it first part icipated in the ruth computat ion 
initiated by Pi. In this case, we can assert (by Th eo rem  1 below) tha t  Pi was not  
deadlocked when it initiated its ruth computation;  hence Pk, discards the message. 
Thus,  Pk discards all messages except those in which rn > latest(i)  or those 
received when wait(i) is t rue and m = latest(i).  

If m > latest(i),  then  by Definitions 4.1, 4.2, and 4.4, Pk must  set latest(i)  to m, 
engager(i) to j (where P1 is the sender), and wait(i) to true. If  Pk receives a reply 
in which m = latest(i)  and wait(i) is true, then  (by Definition 4.3), Pk must  
decrement  num(i)  by 1. 

When Pk receives a query in which m > latest(i),  it propagates  the query to all 
processes in its dependent  set, sets num(i)  to the number  of processes in the 
dependent  set (by Definition 4.3), and updates  o ther  local variables as discussed 
earlier. When Pk initiates a query computat ion it does so by acting as though it 
had just  received a query in which m > latest(k).  

Next, we derive the conditions under  which Pk sends replies. If wait(i)  is t rue 
when Pk receives a query in which m -- latest(i) ,  it replies to the query 
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immediately. If wait(i) is false when Pk receives a query in which m = latest(i) ,  
or wait(i) is arbi t rary  and m < latest(i),  then  Pk discards the query and never 
replies to this query. The  interesting quest ion is when should Pk reply to a query  
in which m > latest(i)? By Definitions 4.1 and 4.2, such a query must  have been 
sent by engager(i).  The  answer to this question is derived by extending the 
conditions in Dijkstra and Schol ten [2]; Pk replies to engager(i)  only if wait(i) is 
true and num(i)  has been reduced to zero (i.e., Pk has received replies to all 
queries with initiator Pi and sequence number  m tha t  it sent, and Pk has been 
continuously idle since it first par t ic ipated in this query  computat ion) .  This  
scheme for replying to engagers is necessary for T h e o r e m  2 (given below): if the 
initiator receives replies to all the queries it sends to its dependent  set, then  the 
initiator is deadlocked. The  detailed description of the algori thm is given below. 

For  an idle process Pi  to initiate a query computation:  

begin 
latest(i) := latest(i) + 1; wait(i) = true; 
send query(i, latest(i), i, j )  to all processes Pj in 
Pi's dependent set S; num(i) := number of elements in S 

e n d  

For an executing process Pk: On becoming executing, set wait(i)  = false, for all 
i. Discard all queries and replies received while in executing state. 

For  an idle process Pk, upon receiving query(i,  m, j ,  k): 

if m > latest(i) 
t h e n  begin 

latest(i) := m; engager(i) :=j; wait(i) := true; 
for all processes Pr in Pk's dependent set S 
send query(i, m, k, r); 
num(i) := number of processes in S 

e n d  

else if  wait(i) a n d  m = latest(i) 
t h e n  send reply(i, m, k,j) to Pj 

Upon receiving reply(i, m, r, k): 

if m = latest(i) and wait(i) 
t h e n  begin 

num(i) := num(i) - 1; 
if  num(i) = 0 
t h e n  i f  i = k 

t h e n  declare Pk deadlocked 
else send reply(i, m, k,j) to Pj 
where j = engager(i) 

e n d  

4.2 Proofs 

THEOREM 1. I f  the initiator of a query computation is deadlocked when it 
initiates the computation, it will (eventually) declare itself deadlocked. 

PROOF. Consider a set S of processes, including the initiator, which is dead- 
locked at the instant at  which the query computa t ion  is initiated. Processes in S 
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cannot  change their  dependent  sets and there  are no messages in transi t  between 
processes in S. Hence the problem is equivalent to tha t  considered by Dijkstra 
and Scholten [2] where "queries" correspond to their  "messages," and their  proof  
applies here. [] 

In the following we restrict  our  a t tent ion to a single query computat ion,  say 
the mth initiated by process Pi. Thus  queries, replies, engagers, and so forth, 
refer to this specific computation.  

LEMMA 1. Suppose a process  Pk sends  a reply to its engager  and  subsequent ly  
becomes execut ing at  some time, say t. Then  there exists  a process  Pr in Pk's 
dependent  set (where the dependen t  set is de termined  at the po in t  at  which  Pk 
replies to its engager)  which  receives a query and  subsequent ly  becomes exe- 
cuting at some t '  < t. 

PROOF. In order for Pk to reply to its engager, it must  have received replies 
from all processes in its dependent  set. In order  for Pk to become executing, it 
must  have received a message from some process in its dependent  set, say Pr.  
Since Pk became executing after sending the reply to its engager, it must  have 
received the message from Pr  after  the reply from Pr; hence, Pr must  have sent 
the message after the reply. Therefore ,  the sequence of events must  be as follows. 
P~ gets the query from Pk, replies to it, becomes executing, and sends the message 
to Pk causing it to become executing. [] 

THEOREM 2. I f  the ini t iator o f  a query computat ion  declares i tsel f  
"deadlocked,"  then it belongs to a dead locked  set. 

PROOF. Let  S be the set of processes including the initiator which received 
queries during this query computation.  We will show tha t  S is a deadlocked set. 
Every  process replying to its engager in this computat ion must  have received 
replies for all queries tha t  it sent. F rom this fact, the following inductive hypoth-  
esis can be established. If  the initiator declares itself deadlocked, a reply must  
have been received to the q th  query in the computat ion,  for q = 1, 2 . . . . .  
Therefore,  every process in S replies to its engager in the computation.  Hence,  
from Lemma 1, it follows tha t  if process Pk in S becomes executing at  t ime t after  
receiving a query, then  some process Pj in S becomes executing at t ime t '  af ter  
receiving a query, and t" < t. Using this inductively, it follows tha t  no process in 
S can become executing after  receiving a query, and hence S is a deadlocked 
set. [] 

THEOREM 3. A t  least  one process  in every dead locked  set  wil l  report  
"deadlocked"  i f  every process  init iates a new query computat ion  whenever  it 
becomes idle. 

PROOF. From Theo rem 1, the last process to become idle in a deadlocked set 
will repor t  "deadlocked." [] 

As in the resource model, any process detecting deadlock can inform others 
tha t  it is deadlocked. 
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4.3 Example 

The resource model is so simple tha t  we do not give an example for it. We do give 
an example for the communication model. A more elaborate example is found in 
[6]. In this example, we use subscripts to distinguish local variables belonging to 
different processes. For instance, engager/(j)  is the value of engager(j)  in process 
Pi. 

Consider a network consisting of four processes. The network's initial state and 
a possible execution sequence is given below. 

Initial State 
Process 1: idle, waiting for process 2 or process 3 
Process 2: idle, waiting for process 4 
Process 3: idle, waiting for process 1 or process 4 
Process 4: executing 

Execution Sequence 

Time Action 

1 Process 1 initiates its first query computation. 
Process 1 sends query(l ,  1, 1, 2) and query(l ,  1, 1, 3). 

2 Process 2 receives query(l ,  1, 1, 2). 
Engager2(1) :-- 1. 
Process 2 sends query(l ,  1, 2, 4). 

3 Process 3 receives query(l ,  1, 1, 3). 
Engagera(1) := 1. 
Process 3 sends query(l ,  1, 3, 1) and query(l ,  1, 3, 4). 

4 Process 4 sends a message to process 3. 
5 Process 1 receives query(l ,  1, 3, 1). 

Process 1 sends reply(i,1,1,3). 
6 Process 4 changes state from executing to idle and waits for process 2. 

Note tha t  processes 2 and 4 are now deadlocked. 

7 Process 4 receives query(l ,  1, 2, 4). 
Engager4(1) := 2; latest4(1):= 1; wait4 (1):= true. 
Process 4 sends query(l ,  1, 4, 2); num_4 (1) := 1. 

8 Process 4 receives query(l ,  1, 3, 4). 
Since m = latest4 (1) and wait4 (1) = true. 
Process 4 sends reply(l,  1, 4, 3). 

9 Process 3 receives message from process 4 (sent at  t ime 4). 
Process 3 becomes executing, sets wait3 (1) := false. 

10 Process 4 initiates its first query computation. 
Process 4 sends query(4, 1, 4, 2); num4 (4) := 1; 
latest4 (4) := 1; wait4 (4) := true. 

11 Process 2 receives query(l ,  1, 4, 2) (sent at  t ime 7). 
Process 2 sends reply(l,  1, 2, 4). 

12 Process 3 receives reply(l,  1, 4, 3) (sent at t ime 8). 
Process 3 is executing. Wait3 (1) is false. 
Thus process 3 will never send reply(l,  1, 3, 1) and process 1 will not 
declare itself deadlocked. 
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13 Process 2 receives query(4, 1, 4, 2) (sent at t ime 10). 
Engager2 (4) := 4i; wait2 (4) := true. 
Process 2 sends query(4, 1, 2, 4); num2(4) := 1. 

14 Process 4 receives reply(l ,  1, 2, 4). 
Wait4 (1) is t rue and now nun~ (1) is 0; engager4(1) = 2. 
Process 4 sends reply(l ,  1, 4, 2). 

15 Process 4 receives query(4, 1, 4, 2). Since latest4 (4) = 1, it sends 
reply(4, 1, 4, 2). 

16 Process 2 receives reply(4, 1, 4, 2). Since wait2(4) = true, it reduces 
num2 (4) from 1 to 0. Since engager2 (4) = 4, it sends reply(4, 1, 2, 4). 

17 Process 4 receives reply(4, 1, 2, 4). Since wait4(4) = true, it reduces 
num4 (4) from 1 to 0 and declares itself deadlocked. 

5. NOTES ON THE ALGORITHMS 

Two algorithms have been proposed for the detect ion of deadlocks. Th e  first 
algorithm, applicable to resource deadlocks, is simpler, involving only one type of 
message (probes) for deadlock detection. Th e  second algorithm is applicable to a 
more general class of problems and therefore involves two types of messages 
(query and reply). These  algorithms are easy to implement  since in ei ther  case, 
each message (probe, query, and reply) is of fixed length and requires a few 
simple computat ional  steps. 

These  algorithms seem at tract ive for reasons of performance as well as cor- 
rectness, since the overhead of deadlock detect ion computat ions and the message 
traffic associated with deadlock detect ion is generated pr imar i l y  when  processes  
are idle (i.e., they have nothing to do and nothing to send). Fur thermore ,  
executing processes need only discard the messages associated with a deadlock 
detection computation.  Every  single deadlock detect ion computat ion involves no 
more than  e probes in resource models or e queries and replies in communicat ion 
models, where e is the number  of communicat ing process pairs in the network. In 
the worst case, where the network of N processes is fully connected, e = N × (N 

- 1). Normally, e, and hence the number  of these messages, will be much  less. 
For example, in the case where each of the N processes has a dependent  set of 
size k or less, e _< k × N. 

To  reduce the number  of deadlock detect ion computat ions which are initiated, 
a process may  initiate one only if it has been idle continuously for some time T, 
where T is a performance parameter .  If the process leaves the idle state before T, 
we have avoided initiating such a computation.  Time-outs  may  be used in a 
similar manner  for probe, query, and reply propagation. Note  tha t  since every 
process could initiate deadlock detect ion computat ions one or more times, proper  
choice of T is critical in reducing the number  of these computations.  Issues 
related to this are discussed in [5]. 

We can ensure tha t  no process has a backlog of an unbounded number  of 
queries or probes by requiring a process to receive acknowledgments  to earlier 
queries or probes from a specific process before sending the next  query or probe 
to tha t  process. 

Our algorithms require tha t  all processes which are permanent ly  idle (including 
terminated,  failed, or abor ted processes) reply to queries and propagate  the probe. 
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If failure prevents such a reply/probe from being sent, the failure must be 
detected by other means and the reply/probe sent. Our algorithm further requires 
that the computation (for which deadlock is being detected) be correct. In 
particular, if the dependent set of a process is miscalculated, the deadlock 
detection algorithm may not function. 
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