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‘ Multimedia Operating Systems I

e Support multiple kinds of applications

— Multimedia applications: Streaming audio, video, games, etc.
— Traditional applications: Editors, compilers, web servers, etc.

e Satisfy different application characteristics and requirements

e Traditional Operating Systems:

— Goal is to maximize system throughput and utilization
— No differentiation between various application classes
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‘ Application Requirements I

e Soft real-time applications: statistical guarantees

— Examples: Streaming media, virtual games

e Interactive applications: no absolute performance guarantees, but low
average response times

— Examples: Editors, compilers

e Throughput-intensive Applications: no performance guarantees, but high
throughput

— Examples: http, ftp servers
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‘ OS Design Requirements I

e Fair, Proportionate resource allocation:

— Divide resources according to application requirements
— Example: 30% of CPU to streaming, 20% to http server, etc.

e Application Isolation:

— Prevent misbehaving or overloaded applications from affecting others
— Example: overloaded web server should not affect streaming media server

e Service Differentiation:

— Scheduling policy appropriate for the application class
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‘ Processor Scheduling I

e Different application classes = different scheduling algorithms

— Example: Time-sharing for best-effort applications, proportional-share for soft
real-time

Need a scheduling framework for service differentiation

e Solution: Hierarchical partitioning of CPU bandwidth
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‘ Hierarchical CPU Scheduling I

e Hierarchical partitioning
specified as a tree

e Leaf nodes:

— Aggregation of threads
— Scheduled by application-specific
scheduler

wl=1 w2=2
(33%) (66%)

e Intermediate nodes:

— Aggregation of application
classes

— Scheduled by an algorithm that
achieves hierarchical partitioning
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‘ Requirements of a Hierarchical CPU Scheduler I

—

e Should achieve proportionate allocation of CPU bandwidth allocated to a
class among its sub-classes, even when the bandwidth available to a class
fluctuates over time

e Should not require computational requirements of tasks to be known a
priori

e Should provide throughput and delay guarantees

e Should be computationally efficient
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‘ Proportionate Allocation I

Assign weights to tasks

Tasks receive CPU bandwidth in proportion to weights

Wiltita)  Wimltita) _
T

'm

|deal definition:

We(ti,t2) :  aggregate work done by thread f in interval in [¢q, t2]

T : weight of thread f

Wi(tist2)  Win(ti,ta) < H

rf rm

Quantum-based scheduling:

H(f,m): fairness measure

Objective: achieve small fairness measure

(f,m)
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‘ Generalized Processor Sharing (GPS) |

e |dealized Algorithm:

— Infinitesimally small quanta
— No scheduling overhead

e Achieves perfect proportionate allocation

— Each task m gets a virtual CPU with capacity (Z’"’."r,) - C

e Lower bound on Fairness Measure of any algorithm

o H(fam):O

-

CMPSCI 677: DISTRIBUTED OPERATING SYSTEMS e LeCture 27, Page 9

__



/_ DEPARTMENT OF COMPUTER SCIENCE, UMASS AMHERST

‘ Weighted Fair Queuing (WFQ) |

e Virtual time v(¢):

dv(t) C
dt _Zirz—

e Start tag Sy and finish tag F: |
Sy = max{v(A(g)), Fy)

lj
Fr=5¢+ —f
qjc gt quantum of thread f
I ¢ length of iy
A(q*}) . time at which the j** quantum is requested
T :  weight of thread f

e Threads are serviced in the increasing order of finish tags
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‘ WFQ: Problems I

e Unfair when processor bandwidth fluctuates over time
e Requires length of quantum to be known a priori

e Simulates GPS “on the side”: Computationally expensive
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‘ Start-Time Fair Queuing (SFQ) |

o Start tag Sy and finish tag F:

Sy = max{v(A(g)), Fr}

[
Fr=5¢+ =i
r'f
q‘} . 5" quantum of thread f
L -t length of Y
A(g}) - time at which the j** quantum is requested
T f : weight of thread f

e Virtual time v(t): start tag of the thread in service at time ¢

e Threads are serviced in the increasing order of start tags

-

CMPSCI 677: DISTRIBUTED OPERATING SYSTEMS s LeCture 27, Page 12

__



DEPARTMENT OF COMPUTER SCIENCE, UMASS AMHERST

—

SFQ: An Example

e Threads Aand Bs.t. rq:rg=1:2

blocked runnable exits start tag
0 10 20 30 40 \L \LO 60 70 \L N
Thread A D ] \ [ [ [ finish tag
L |
. 10 . 20 . 30 40 50 . 60 . 70 . 80
0 5 ' 10 15 ' 50 55 ' 60 65 ' 70 75 80
Thread B . %/ . . ! . / Bz !
1 1 1 ‘ 1 ] 7
L RS PEERR ¢560 HE ﬁ
blocked . runnable 1 1 exits
Virtual Time L ‘ ‘ L o C ‘ |
60 L
40 L
20 L
0 ‘ 1
0 50 100 150 200

Real Time (ms)
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‘ Properties of SFQ I

SFQ achieves fair allocation of CPU regardless of variation in available
processing bandwidth

l?]'cnaas lmaw

+
Ty T'm

Wf(tlatZ) Wm(t17t2)
Ty

I'm

SFQ does not require the length of the quantum to be known a priori

SFQ provides bounds on maximum delay incurred and minimum
throughput achieved by threads in realistic environments

SFQ is computationally efficient
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‘ Multimedia OS Case Study: QLinux |

e QoS-Enhanced version of Linux

e Replaces traditional Linux resource schedulers

Applications (interactive, throughput-intensive, soft real-time)

Y user—space
t t ) kernel-space

Cello disk H-SFQ CPU Lazy Receiver lq |o le— «
scheduler scheduler Processing 8 =
£ 3]
| H-SFQ Packet ¢ p

scheduler . g

T

Z
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‘ QLinux Components: CPU Scheduler I

e Hierarchical SFQ (HSFQ):

—

— Leaf nodes: Class-specific schedulers
— Intermediate nodes: SFQ

wl=1 w2=2
(33%) (66%)
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‘ QLinux Components: Packet Scheduler I

e HSFQ:

-

— Sockets attached to queues
— Queues scheduled hierarchically
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w2=2
(66%)

< packet
queue

wl=1 w2=1

\

socketl  socket2
Audio Application
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QLinux Components: Disk Scheduler

o Ce”O: . Throughput
. ' ”tglgggve irgtlegsss've Soft Crleal—time
— Class-independent scheduler: ass
Weighted bandwidth allocation LI Pending
— Class-specific scheduler: H °te g Queues
Service differentiation Ost (O= O s |5 shectic

~N

C Class-independent
Scheduler

Scheduled
Queue

Q) FeFs
|

=
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‘ QLinux Components: Network Subsystem I

e Lazy Receiver Processing (LRP)

e Traditional OS network subsystem:

— Interrupt driven processing of incoming packets
— Inappropriate accounting of resource usage

o LRP:

— Delays protocol processing: accurate resource accounting
— Early demultiplexing: application isolation
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