
CS677: Distributed OSComputer Science Lecture 20, page 1

Today: Distributed File Systems

• Issues in distributed file systems

• Sun’s Network File System case study

CS677: Distributed OSComputer Science Lecture 20, page 2

NFS Architecture
• Sun’s Network File System (NFS) – widely used distributed file

system

• Uses the virtual file system layer to handle local and remote files

CS677: Distributed OSComputer Science Lecture 20, page 3

NFS Operations

Write data to a fileYesYesWrite

Read the data contained in a fileYesYesRead

Set one or more attribute values for a fileYesYesSetattr

Read the attribute values for a fileYesYesGetattr

Read the path name stored in a symbolic linkYesYesReadlink

Read the entries in a directoryYesYesReaddir

Look up a file by means of a file nameYesYesLookup

Close a fileYesNoClose

Open a fileYesNoOpen

Remove an empty subdirectory from a directoryNoYesRmdir

Change the name of a fileYesYesRename

Create a special fileNoYesMknod

Create a subdirectory in a given directoryNoYesMkdir

Create a symbolic link to a fileNoYesSymlink

Create a hard link to a fileYesYesLink

Create a nonregular fileYesNoCreate

Create a regular fileNoYesCreate

Descriptionv4v3Operation

CS677: Distributed OSComputer Science Lecture 20, page 4

Communication

a) Reading data from a file in NFS version 3.

b) Reading data using a compound procedure in version 4.

 Both versions use Open Network Computing (ONC) RPCs

 - One RPC per operation (NFS v3); multiple operations supported in v4.

CS677: Distributed OSComputer Science Lecture 20, page 5

Naming: Mount Protocol

• NFS uses the mount protocol to access remote files

– Mount protocol establishes a local name for remote files

– Users access remote files using local names; OS takes care of the mapping

CS677: Distributed OSComputer Science Lecture 20, page 6

Naming: Crossing Mount Points
• Mounting nested directories from multiple servers

• NFS v3 does not support transitive exports (for security reasons)

– NFS v4 allows clients to detects crossing of mount points, supports
recursive lookups

CS677: Distributed OSComputer Science Lecture 20, page 7

Automounting

• Automounting: mount on demand

CS677: Distributed OSComputer Science Lecture 20, page 8

File Attributes (1)

• Some general mandatory file attributes in NFS.

– NFS modeled based on Unix-like file systems

• Implementing NFS on other file systems (Windows) difficult

– NFS v4 enhances compatibility by using mandatory and recommended attributes

Server-unique identifier of the file's file systemFSID

Indicator for a client to see if and/or when the file has changedCHANGE

The length of the file in bytesSIZE

The type of the file (regular, directory, symbolic link)TYPE

DescriptionAttribute

CS677: Distributed OSComputer Science Lecture 20, page 9

File Attributes (2)

• Some general recommended file attributes.

Time when the file was createdTIME_CREATE

Time when the file data were last modifiedTIME_MODIFY

Time when the file data were last accessedTIME_ACCESS

The character-string name of the file's ownerOWNER

Locations in the network where this file system may be foundFS_LOCATIONS

A file-system unique identifier for this fileFILEID

The server-provided file handle of this fileFILEHANDLE

an access control list associated with the fileACL

DescriptionAttribute

CS677: Distributed OSComputer Science Lecture 20, page 10

Semantics of File Sharing
a) On a single processor, when a read

follows a write, the value returned by the

read is the value just written.

b) In a distributed system with caching,

obsolete values may be returned.

CS677: Distributed OSComputer Science Lecture 20, page 11

Semantics of File Sharing

• Four ways of dealing with the shared files in a distributed system.

– NFS implements session semantics

• Can use remote/access model for providing UNIX semantics (expensive)

• Most implementations use local caches for performance and provide session

semantics

All changes occur atomicallyTransaction

No updates are possible; simplifies sharing and replicationImmutable files

No changes are visible to other processes until the file is closedSession semantics

Every operation on a file is instantly visible to all processesUNIX semantics

CommentMethod

CS677: Distributed OSComputer Science Lecture 20, page 12

File Locking in NFS

• NFS supports file locking

• Applications can use locks to ensure consistency

• Locking was not part of NFS until version 3

• NFS v4 supports locking as part of the protocol (see above table)

Renew the lease on a specified lockRenew

Remove a lock from a range of bytesLocku

Test whether a conflicting lock has been grantedLockt

Creates a lock for a range of bytes (non-blocking_Lock

DescriptionOperation

CS677: Distributed OSComputer Science Lecture 20, page 13

File Locking: Share Reservations

• The result of an open operation with share reservations in NFS.

a) When the client requests shared access given the current denial state.

b) When the client requests a denial state given the current file access state.

(b)

FailSucceedFailSucceedREAD

FailFailSucceedSucceedWRITE

FailFailFailSucceedBOTH

BOTHWRITEREADNONE

(a)

 Requested file denial state

FailFailFailSucceedBOTH

FailFailSucceedSucceedWRITE

FailSucceedFailSucceedREAD

BOTHWRITEREADNONE

 Current file denial state

Request

access

Current

access

state

CS677: Distributed OSComputer Science Lecture 20, page 14

Client Caching

• Client-side caching is left to the implementation (NFS does not prohibit it)

– Different implementation use different caching policies

• Sun: allow cache data to be stale for up to 30 seconds

CS677: Distributed OSComputer Science Lecture 20, page 15

Client Caching: Delegation

• NFS V4 supports open delegation

– Server delegates local open and close requests to the NFS client

– Uses a callback mechanism to recall file delegation.

CS677: Distributed OSComputer Science Lecture 20, page 16

RPC Failures

• Three situations for handling retransmissions: use a duplicate request cache

a) The request is still in progress

b) The reply has just been returned

c) The reply has been some time ago, but was lost.

 Use a duplicate-request cache: transaction Ids on RPCs, results cached

CS677: Distributed OSComputer Science Lecture 20, page 17

Security

• The NFS security architecture.

– Simplest case: user ID, group ID authentication only

CS677: Distributed OSComputer Science Lecture 20, page 18

Secure RPCs

• Secure RPC in NFS version 4.

CS677: Distributed OSComputer Science Lecture 20, page 19

Replica Servers

• NFS ver 4 supports replications

• Entire file systems must be replicated

• FS_LOCATION attribute for each file

• Replicated servers: implementation specific

