
CS677: Distributed OSComputer Science Lecture 19, page 1

Last Class: Fault tolerance

• Reliable communication

– One-one communication

– One-many communication

• Distributed commit

– Two phase commit

– Three phase commit

• Failure recovery

– Checkpointing

– Message logging

CS677: Distributed OSComputer Science Lecture 19, page 2

Two Phase Commit

•Coordinator process coordinates

the operation

•Involves two phases

– Voting phase: processes vote on

whether to commit

– Decision phase: actually commit

or abort

CS677: Distributed OSComputer Science Lecture 19, page 3

Three-Phase Commit

Two phase commit: problem if coordinator crashes (processes block)

Three phase commit: variant of 2PC that avoids blocking

CS677: Distributed OSComputer Science Lecture 19, page 4

Recovery

• Techniques thus far allow failure handling

• Recovery: operations that must be performed after a

failure to recover to a correct state

• Techniques:

– Checkpointing:

• Periodically checkpoint state

• Upon a crash roll back to a previous checkpoint with a

consistent state

CS677: Distributed OSComputer Science Lecture 19, page 5

Independent Checkpointing

• Each processes periodically checkpoints independently of other

processes

• Upon a failure, work backwards to locate a consistent cut

• Problem: if most recent checkpoints form inconsistent cut, will need

to keep rolling back until a consistent cut is found

• Cascading rollbacks can lead to a domino effect.

CS677: Distributed OSComputer Science Lecture 19, page 6

Coordinated Checkpointing

• Take a distributed snapshot [discussed in Lec. 11]

• Upon a failure, roll back to the latest snapshot

– All process restart from the latest snapshot

CS677: Distributed OSComputer Science Lecture 19, page 7

Message Logging

• Checkpointing is expensive

– All processes restart from previous consistent cut

– Taking a snapshot is expensive

– Infrequent snapshots => all computations after previous
snapshot will need to be redone [wasteful]

• Combine checkpointing (expensive) with message
logging (cheap)

– Take infrequent checkpoints

– Log all messages between checkpoints to local stable storage

– To recover: simply replay messages from previous checkpoint

• Avoids recomputations from previous checkpoint

CS677: Distributed OSComputer Science Lecture 19, page 8

Today: Distributed File Systems

• Overview of stand-alone (UNIX) file systems

• Issues in distributed file systems

• Next two classes: case studies of distributed file systems

• NFS

• Code

• xFS

• Log-structured file systems (time permitting)

CS677: Distributed OSComputer Science Lecture 19, page 9

File System Basics

• File: named collection of logically related data

– Unix file: an uninterpreted sequence of bytes

• File system:

– Provides a logical view of data and storage functions

– User-friendly interface

– Provides facility to create, modify, organize, and delete files

– Provides sharing among users in a controlled manner

– Provides protection

CS677: Distributed OSComputer Science Lecture 19, page 10

File Types and Attributes

• File types

– Directory, regular file

– Character special file: used for serial I/O

– Block special file: used to model disks [buffered I/O]

– Strongly v/s weakly typed files

• File attributes: varies from OS to OS

– Name, type, location, size, protection info, password, owner,
creator, time and date of creation, last modification, access

• File operations:

– Create, delete, open, close, read, write, append, get/set
attributes

CS677: Distributed OSComputer Science Lecture 19, page 11

Directories

• Tree structure organization most common

• Access to a file specified by absolute file name

• User can assign a directory as the current working directory

– Access to files can be specified by relative name relative to the current

directory

• Possible organizations: linear list of files, hash table

CS677: Distributed OSComputer Science Lecture 19, page 12

Unix File System Review

• User file: linear array of bytes. No records, no file types

• Directory: special file not directly writable by user

• File structure: directed acyclic graph [directories may not be

shared, files may be shared (why?)]

• Directory entry for each file

– File name

– inode number

– Major device number

– Minor device number

• All inodes are stored at a special location on disk [super block]

– Inodes store file attributes and a multi-level index that has a list of disk

block locations for the file

CS677: Distributed OSComputer Science Lecture 19, page 13

Inode Structure

• Fields

– Mode

– Owner_ID, group_id

– Dir_file

– Protection bits

– Last access time, last write time, last inode time

– Size, no of blocks

– Ref_cnt

– Address[0], … address[14]

• Multi-level index: 12 direct blocks, one single, double, and
triple indirect blocks

CS677: Distributed OSComputer Science Lecture 19, page 14

Distributed File Systems

• File service: specification of what the file system offers

– Client primitives, application programming interface (API)

• File server: process that implements file service

– Can have several servers on one machine (UNIX, DOS,…)

• Components of interest

– File service

– Directory service

CS677: Distributed OSComputer Science Lecture 19, page 15

File Service

• Remote access model

– Work done at the server

• Stateful server (e.g., databases)

• Consistent sharing (+)

• Server may be a bottleneck (-)

• Need for communication (-)

•Upload/download mode

– Work done at the client

•Stateless server

•Simple functionality (+)

•Moves files/blocks, need storage (-)

CS677: Distributed OSComputer Science Lecture 19, page 16

Directory Service

•Create/delete files

•Hierarchical directory structure

•Arbitrary graph

CS677: Distributed OSComputer Science Lecture 19, page 17

System Structure: Server Type

• Stateless server

– No information is kept at server between client requests

– All information needed to service a requests must be provided
by the client with each request (what info?)

– More tolerant to server crashes

• Stateful server

– Server maintains information about client accesses

– Shorted request messages

– Better performance

– Idempotency easier

– Consistency is easier to achieve

CS677: Distributed OSComputer Science Lecture 19, page 18

System Structure

• Client v/s server implementations possibilities

– Same process implements both functionality

– Different processes, same machine

– Different machines (a machine can either be client or server)

• Directory/file service – same server?

– Different server processes: cleaner, more flexible, more overhead

– Same server: just the opposite

CS677: Distributed OSComputer Science Lecture 19, page 19

Naming Issues

•Path name lookup can be iterative or recursive

– /usr/freya/bin/netscape

CS677: Distributed OSComputer Science Lecture 19, page 20

Naming Issues: Mounting

• Mounting: file system can be mounted to a node of the

directory

• Depending on the actual mounts, different clients see

different view of the distributed file system

CS677: Distributed OSComputer Science Lecture 19, page 21

File Sharing Semantics

• Unix semantics

– Read after write returns value written

• System enforces absolute time ordering on all operations

• Always returns most recent value

• Changes immediately visible to all processes

• Difficult to enforce in distributed file systems unless all
access occur at server (with no client caching)

• Session semantics

– Local changes only visible to process that opened file

– File close => changes made visible to all processes

– Allows local caching of file at client

– Two nearly simultaneous file closes => one overwrites other?

CS677: Distributed OSComputer Science Lecture 19, page 22

Other File Sharing Semantics

• Immutable files

– Create/delete only; no modifications allowed

– Delete file in use by another process

• Atomic transactions

– Access to files protected by transactions

– Serializable access

– Costly to implement

