
CS677: Distributed OSComputer Science Lecture 9, page 1

Today: Naming

• Names are used to share resources, uniquely identify

entities and refer to locations

• Need to map from name to the entity it refers to

– E.g., Browser access to www.cnn.com

– Use name resolution

• Differences in naming in distributed and non-distributed

systems

– Distributed systems: naming systems is itself distributed

• How to name mobile entities?

CS677: Distributed OSComputer Science Lecture 9, page 2

Example: File Names

• Hierarchical directory structure (DAG)

– Each file name is a unique path in the DAG

– Resolution of /home/steen/mbox a traversal of the DAG

• File names are human-friendly



CS677: Distributed OSComputer Science Lecture 9, page 3

Resolving File Names across Machines

• Remote files are accessed using a node name, path name

• NFS mount protocol: map a remote node onto local DAG

– Remote files are accessed using local names! (location independence)

– OS maintains a mount table with the mappings

CS677: Distributed OSComputer Science Lecture 9, page 4

Name Space Distribution

• Naming in large distributed systems

– System may be global in scope (e.g., Internet, WWW)

• Name space is organized hierarchically

– Single root node (like naming files)

• Name space is distributed and has three logical layers

– Global layer: highest level nodes (root and a few children)

• Represent groups of organizations, rare changes

– Administrational layer: nodes managed by a single organization

• Typically one node per department, infrequent changes

– Managerial layer: actual nodes

• Frequent changes

– Zone: part of the name space managed by a separate name server



CS677: Distributed OSComputer Science Lecture 9, page 5

Name Space Distribution Example

• An example partitioning of the DNS name space,

including Internet-accessible files, into three layers.

CS677: Distributed OSComputer Science Lecture 9, page 6

Name Space Distribution

• A comparison between name servers for implementing nodes from a large-scale
name space partitioned into a global layer, as an administrational layer, and a
managerial layer.

• The more stable a layer, the longer are the lookups valid (and can be cached
longer)

SometimesYesYesIs client-side caching applied?

NoneNone or fewManyNumber of replicas

ImmediateImmediateLazyUpdate propagation

ImmediateMillisecondsSecondsResponsiveness to lookups

Vast numbersManyFewTotal number of nodes

DepartmentOrganizationWorldwideGeographical scale of network

ManagerialAdministrationalGlobalItem



CS677: Distributed OSComputer Science Lecture 9, page 7

Implementing Name Resolution

• Iterative name resolution

– Start with the root

– Each layer resolves as much as it can and returns address of next name server

CS677: Distributed OSComputer Science Lecture 9, page 8

Recursive Name Resolution

• Recursive name resolution

– Start at the root

– Each layer resolves as much as it can and hands the rest to the next layer



CS677: Distributed OSComputer Science Lecture 9, page 9

Which is better?

• Recursive name resolution puts heavy burden on gobal

layer nodes

– Burden is heavy => typically support only iterative resolution

• Advantages of recursive name resolution

– Caching possible at name servers (gradually learn about others)

• Caching improves performance

• Use time-to-live values to impose limits on caching duration

• Results from higher layers can be cached for longer periods

• Iterative: only caching at client possible

CS677: Distributed OSComputer Science Lecture 9, page 10

Communication costs

• The comparison between recursive and iterative name
resolution with respect to communication costs

– Recursive may be cheaper



CS677: Distributed OSComputer Science Lecture 9, page 11

The DNS Name Space

• The most important types of resource records forming the contents
of nodes in the DNS name space.

Contains any entity-specific information considered usefulAny kindTXT

Holds information on the host this node representsHostHINFO

Contains the canonical name of a hostHostPTR

Symbolic link with the primary name of the represented nodeNodeCNAME

Refers to a name server that implements the represented zoneZoneNS

Refers to a server handling a specific serviceDomainSRV

Refers to a mail server to handle mail addressed to this nodeDomainMX

Contains an IP address of the host this node representsHostA

Holds information on the represented zoneZoneSOA

Description
Associated

entity

Type of

record

CS677: Distributed OSComputer Science Lecture 9, page 12

DNS Implementation

• An excerpt

from the

DNS

database for

the zone

cs.vu.nl.



CS677: Distributed OSComputer Science Lecture 9, page 13

X.500 Directory Service

• OSI Standard

• Directory service: special kind of naming service where:

– Clients can lookup entities based on attributes instead of full

name

– Real-world example: Yellow pages: look for a plumber

CS677: Distributed OSComputer Science Lecture 9, page 14

The X.500 Name Space (1)

• A simple example of a X.500 directory entry

using X.500 naming conventions.

130.37.21.11--WWW_Server

130.37.21.11--FTP_Server

130.37.24.6, 192.31.231,192.31.231.66--Mail_Servers

Main serverCNCommonName

Math. & Comp. Sc.OUOrganizationalUnit

Vrije UniversiteitLOrganization

AmsterdamLLocality

NLCCountry

ValueAbbr.Attribute



CS677: Distributed OSComputer Science Lecture 9, page 15

The X.500 Name Space (2)

• Part of the

directory

information tree.

CS677: Distributed OSComputer Science Lecture 9, page 16

LDAP

• Lightweight Directory Access Protocol (LDAP)

– X.500 too complex for many applications

– LDAP: Simplified version of X.500

– Widely used for Internet services

– Application-level protocol, uses TCP

– Lookups and updates can use strings instead of OSI encoding

– Use master servers and replicas servers for performance improvements

– Example LDAP implementations:

• Active Directory (Windows 2000)

• Novell Directory services

• iPlanet directory services (Netscape)

• Typical uses: user profiles, access privileges, network resources



CS677: Distributed OSComputer Science Lecture 9, page 17

Project 1

• Illustrate distributed systems principles using sensor
systems/sensor networks

• Sources: a network of sensors that periodically produce
new data

• Sinks: consumers of sensor data that periodically need
updates

• Sensor proxies:

– Sensors post updates to proxies

– Sinks subscribe to one or more sources

– Proxies disseminate data to sinks

• Use a publish-subscribe paradigm for data dissemination

CS677: Distributed OSComputer Science Lecture 9, page 18

sensor1

Sink1

sensor2

1: Register 

2: updates

updates

Sink2

Sensor proxy

subscribe



CS677: Distributed OSComputer Science Lecture 9, page 19

Project 1 details

• Proxy should be multi-threaded to service arbitrary

number of sources and sinks

– Sources, sinks and the proxy can reside on different machines

• Proxy should employ synchronization

– Proxies may process data from multiple sources and

disseminate it to a sink

• Example: disseminate sum(sensor1,sensor2) -> source 1


