Sprite (contd)

 Sprite process migration
— Facilitated by the Sprite file system
— State transfer
» Swap everything out
* Send page tables and file descriptors to receiver
» Demand page process in
* Only dependencies are communication-related

— Redirect communication from home WS to receiver

m Computer Science CS677: Distributed OS Lecture 8, page 1
UMASS

Code and Process Migration

Motivation

How does migration occur?

Resource migration

Agent-based system

Details of process migration

m Computer Science CS677: Distributed OS Lecture 8, page 2
UMASS

Motivation

« Key reasons: performance and flexibility

* Process migration (aka strong mobility)

— Improved system-wide performance — better utilization of
system-wide resources

— Examples: Condor, DQS

» Code migration (aka weak mobility)

— Shipment of server code to client — filling forms (reduce
communication, no need to pre-link stubs with client)

— Ship parts of client application to server instead of data from
server to client (e.g., databases)

— Improve parallelism — agent-based web searches

m Computer Science CS677: Distributed OS Lecture 8, page 3
UMASS

Motivation

- Flexibility
— Dynamic configuration of distributed system
— Clients don’t need preinstalled software — download on demand

2. Client and server

. communicate
Client

ARNE
I

-

. - 1. Client fetches code
Service-specific
client-side code

Code repository

m Computer Science CS677: Distributed OS Lecture 8, page 4
UMASS

Migration models

Process = code seg + resource seg + execution seg
Weak versus strong mobility

— Weak => transferred program starts from initial state
Sender-initiated versus receiver-initiated
Sender-initiated (code is with sender)

— Client sending a query to database server

— Client should be pre-registered
Receiver-initiated

— Java applets

— Receiver can be anonymous

m Computer Science CS677: Distributed OS Lecture 8, page 5
UMASS

Who executes migrated entity?

* Code migration:

— Execute in a separate process

— [Applets] Execute in target process
* Process migration

— Remote cloning

— Migrate the process

m Computer Science CS677: Distributed OS Lecture 8, page 6
UMASS

Models for Code Migration

Execute at
Sender-initiated " target process
mobility . Execute in

. separate process
Weak mobility

Execute at
Receiver-initiated —— target process

mobility . Execute in

separate process
Mobility mechanism

Migrate process
Sender-initiated g P
mobility
/ T~ Clone process

Strong mobility

Migrate process
Receiver-initiated _— 9 P
mobility

Clone process

m Computer Science CS677: Distributed OS Lecture 8, page 7
UMASS

Do Resources Migrate?

* Depends on resource to process binding
— By identifier: specific web site, ftp server
— By value: Java libraries
— By type: printers, local devices

* Depends on type of “attachments”
— Unattached to any node: data files
— Fastened resources (can be moved only at high cost)
» Database, web sites
— Fixed resources

* Local devices, communication end points

m Computer Science CS677: Distributed OS Lecture 8, page 8
UMASS

Resource Migration Actions

Unattached Fastened Fixed
Process-to- | By identifier MV (or GR) GR (or MV) GR
resource | By value CP (or MV, GR) GR (or CP) GR
binding | By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

Resource-to machine binding

* Actions to be taken with respect to the references to local resources
when migrating code to another machine.

* GR: establish global system-wide reference

¢ MV: move the resources

* CP: copy the resource

* RB: rebind process to locally available resource

m Computer Science
UMASS

CS677: Distributed OS Lecture 8, page 9

Migration in Heterogeneous Systems

* Systems can be heterogeneous (different architecture, OS)
— Support only weak mobility: recompile code, no run time information

— Strong mobility: recompile code segment, transfer execution segment
[migration stack]
— Virtual machines - interpret source (scripts) or intermediate code [Java]

Push marshalled
procedure call onto
migration stack

Local stack

operations B /
/ < T g Local
/ Procedure B \< /FJ variables B
/ T T) Return label
-~ \ ™ jump) to A
P - \ ~ < (jump)
Call from s (Local \ | Parameter
I for B
AtoB // J variables B values for
Identification
—»/ | Return addr.
< //(_/ \\ from B \ for proc. B
// AN Local
- Parameter bles A
Push procedure values for B variables
call onto program Return label
\ stack Local stack to caller A
operations A Parameter
. Local values for A
variables A \dentificat
entification
Procedure A Return addr. for proc. A
from A
Migration
Program stack
stack (marshalled

data only)

CS677: Distributed OS Lecture 8, page 10

m Computer Science
UMASS

Agents

* Software agents

— Autonomous process capable of reacting to, and initiating
changes in its environment, possibly in collaboration

— More than a “process” — can act on its own
* Mobile agent

— Capability to move between machines

— Needs support for strong mobility

— Example: D’ Agents (aka Agent TCL)

 Support for heterogeneous systems, uses interpreted
languages

m Computer Science CS677: Distributed OS Lecture 8, page 11
UMASS

Software Agents in Distributed Systems

Common to _
Property all agents? Description
Autonomous Yes Can act on its own
Reactive Yes Responds timely to changes in its environment
Proactive Yes Initiates actions that affects its environment
Communicative Yes Can exchange information with users and other agents
Continuous No Has a relatively long lifespan
Mobile No Can migrate from one site to another
Adaptive No Capable of learning

* Some important properties by which different types of agents can be
distinguished.

m Computer Science CS677: Distributed OS Lecture 8, page 12
UMASS

Agent Technology

o T
Agent program | 4 Agent
Agent platform
Agent's genmp
4| endpoint ¢ Inter-platform
communication
Management Directory ACC / >
component service
3 | I |
Intra-platform
communication
m Compufer Science CS677: Distributed OS Lecture 8, page 13
UMASS

Agent Communication Languages

Message purpose Description Message Content
INFORM Inform that a given proposition is true Proposition
QUERY-IF Query whether a given proposition is true Proposition
QUERY-REF Query for a give object Expression

CFP Ask for a proposal Proposal specifics
PROPOSE Provide a proposal Proposal
ACCEPT-PROPOSAL Tell that a given proposal is accepted Proposal ID
REJECT-PROPOSAL Tell that a given proposal is rejected Proposal ID
REQUEST Request that an action be performed Action specification
SUBSCRIBE Subscribe to an information source Reference to source

m Computer Science CS677: Distributed OS Lecture 8, page 14
UMASS

Agent Communication Languages

Field Value

Purpose INFORM

Sender max@http://fanclub-beatrix.royalty-spotters.nl:7239
Receiver elke@iiop://royalty-watcher.uk:5623

Language Prolog

Ontology genealogy

Content female(beatrix),parent(beatrix,juliana,bernhard)

* A simple example of a FIPA ACL message sent between two agents using Prolog to
express genealogy information.

m Computer Science CS677: Distributed OS Lecture 8, page 15
UMASS

