
CS677: Distributed OSComputer Science Lecture 8, page 1

Sprite (contd)

• Sprite process migration

– Facilitated by the Sprite file system

– State transfer

• Swap everything out

• Send page tables and file descriptors to receiver

• Demand page process in

• Only dependencies are communication-related

– Redirect communication from home WS to receiver

CS677: Distributed OSComputer Science Lecture 8, page 2

Code and Process Migration

• Motivation

• How does migration occur?

• Resource migration

• Agent-based system

• Details of process migration

CS677: Distributed OSComputer Science Lecture 8, page 3

Motivation

• Key reasons: performance and flexibility

• Process migration (aka strong mobility)

– Improved system-wide performance – better utilization of
system-wide resources

– Examples: Condor, DQS

• Code migration (aka weak mobility)

– Shipment of server code to client – filling forms (reduce
communication, no need to pre-link stubs with client)

– Ship parts of client application to server instead of data from
server to client (e.g., databases)

– Improve parallelism – agent-based web searches

CS677: Distributed OSComputer Science Lecture 8, page 4

Motivation

• Flexibility

– Dynamic configuration of distributed system

– Clients don’t need preinstalled software – download on demand

CS677: Distributed OSComputer Science Lecture 8, page 5

Migration models

• Process = code seg + resource seg + execution seg

• Weak versus strong mobility

– Weak => transferred program starts from initial state

• Sender-initiated versus receiver-initiated

• Sender-initiated (code is with sender)

– Client sending a query to database server

– Client should be pre-registered

• Receiver-initiated

– Java applets

– Receiver can be anonymous

CS677: Distributed OSComputer Science Lecture 8, page 6

Who executes migrated entity?

• Code migration:

– Execute in a separate process

– [Applets] Execute in target process

• Process migration

– Remote cloning

– Migrate the process

CS677: Distributed OSComputer Science Lecture 8, page 7

Models for Code Migration

• Alternatives for code migration.

CS677: Distributed OSComputer Science Lecture 8, page 8

Do Resources Migrate?

• Depends on resource to process binding

– By identifier: specific web site, ftp server

– By value: Java libraries

– By type: printers, local devices

• Depends on type of “attachments”

– Unattached to any node: data files

– Fastened resources (can be moved only at high cost)

• Database, web sites

– Fixed resources

• Local devices, communication end points

CS677: Distributed OSComputer Science Lecture 8, page 9

Resource Migration Actions

• Actions to be taken with respect to the references to local resources

when migrating code to another machine.

• GR: establish global system-wide reference

• MV: move the resources

• CP: copy the resource

• RB: rebind process to locally available resource

GR

GR

RB (or GR)

GR (or MV)

GR (or CP)

RB (or GR, CP)

MV (or GR)

CP (or MV, GR)

RB (or GR, CP)

By identifier

By value

By type

FixedFastenedUnattached

Resource-to machine binding

Process-to-

resource

binding

CS677: Distributed OSComputer Science Lecture 8, page 10

Migration in Heterogeneous Systems

• Systems can be heterogeneous (different architecture, OS)

– Support only weak mobility: recompile code, no run time information

– Strong mobility: recompile code segment, transfer execution segment

[migration stack]

– Virtual machines - interpret source (scripts) or intermediate code [Java]

CS677: Distributed OSComputer Science Lecture 8, page 11

Agents

• Software agents

– Autonomous process capable of reacting to, and initiating

changes in its environment, possibly in collaboration

– More than a “process” – can act on its own

• Mobile agent

– Capability to move between machines

– Needs support for strong mobility

– Example: D’Agents (aka Agent TCL)

• Support for heterogeneous systems, uses interpreted

languages

CS677: Distributed OSComputer Science Lecture 8, page 12

Software Agents in Distributed Systems

• Some important properties by which different types of agents can be

distinguished.

Capable of learningNoAdaptive

Can migrate from one site to anotherNoMobile

Has a relatively long lifespanNoContinuous

Can exchange information with users and other agentsYesCommunicative

Initiates actions that affects its environmentYesProactive

Responds timely to changes in its environmentYesReactive

Can act on its ownYesAutonomous

Description
Common to

all agents?
Property

CS677: Distributed OSComputer Science Lecture 8, page 13

Agent Technology

• The general model of an agent platform (adapted from [fipa98-mgt]).

CS677: Distributed OSComputer Science Lecture 8, page 14

Agent Communication Languages

Reference to sourceSubscribe to an information sourceSUBSCRIBE

Action specificationRequest that an action be performedREQUEST

Proposal IDTell that a given proposal is rejectedREJECT-PROPOSAL

Proposal IDTell that a given proposal is acceptedACCEPT-PROPOSAL

ProposalProvide a proposalPROPOSE

Proposal specificsAsk for a proposalCFP

ExpressionQuery for a give objectQUERY-REF

PropositionQuery whether a given proposition is trueQUERY-IF

PropositionInform that a given proposition is trueINFORM

Message ContentDescriptionMessage purpose

CS677: Distributed OSComputer Science Lecture 8, page 15

Agent Communication Languages

• A simple example of a FIPA ACL message sent between two agents using Prolog to

express genealogy information.

female(beatrix),parent(beatrix,juliana,bernhard)Content

genealogyOntology

PrologLanguage

elke@iiop://royalty-watcher.uk:5623Receiver

max@http://fanclub-beatrix.royalty-spotters.nl:7239Sender

INFORMPurpose

ValueField

