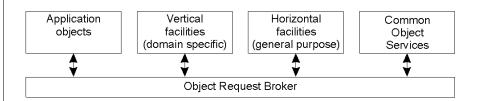
Today: Distributed Middleware

- Middleware concepts
- Case study: CORBA

CS677: Distributed OS

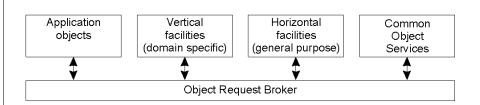
Lecture 24, page 1


Middleware

- Software layer between application and the OS
 - Provides useful services to the application
 - Abstracts out common functionality required by distributed applications
 - Applications use the middleware API to invoke services
- Examples:
 - CORBA
 - DCOM

CS677: Distributed OS

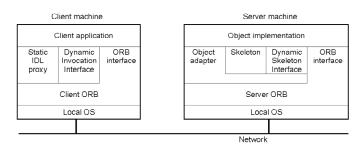
Overview of CORBA


- Common Object Request Broker Architecture
 - Specification of a distributed middleware
 - Specs drawn up by Object Management Group (OMG)
 - http://www.omg.org
- Goal: Interoperability with distributed applications on various platforms

CS677: Distributed OS

Lecture 24, page 3

CORBA Overview



- Object request broker (ORB)
 - Core of the middleware platform
 - Handles communication between objects and clients
 - Handles distribution and heterogeneity issues
 - May be implemented as libraries
- Facilities: composition of CORBA services

CS677: Distributed OS

Object Model

- Objects & services specified using an Interface Definition language (IDL)
 - Used to specify interface of objects and/or services
- ORB: run-time system that handles object-client communication
- Dynamic invocation interface: allows object invocation at run-time
 - Generic invoke operation: takes object reference as input
 - Interface repository stores all interface definitions

CS677: Distributed OS

Lecture 24, page 5

CORBA Services

- Collection service: group objects into lists, queues,...
- Query service: use query language to query for service(s)
- Concurrency control service: locking services
- Event service: interrupt upon a specific event
- Many more...

CS677: Distributed OS

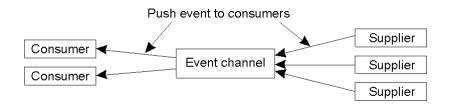
Corba Services

Service	Description	
Collection	Facilities for grouping objects into lists, queue, sets, etc.	
Query	Facilities for querying collections of objects in a declarative manner	
Concurrency	Facilities to allow concurrent access to shared objects	
Transaction	Flat and nested transactions on method calls over multiple objects	
Event	Facilities for asynchronous communication through events	
Notification	Advanced facilities for event-based asynchronous communication	
Externalization	Facilities for marshaling and unmarshaling of objects	
Life cycle	Facilities for creation, deletion, copying, and moving of objects	
Licensing	Facilities for attaching a license to an object	
Naming	Facilities for systemwide name of objects	
Property	Facilities for associating (attribute, value) pairs with objects	
Trading	Facilities to publish and find the services on object has to offer	
Persistence	Facilities for persistently storing objects	
Relationship	Facilities for expressing relationships between objects	
Security	Mechanisms for secure channels, authorization, and auditing	
Time	Provides the current time within specified error margins	

CS677: Distributed OS

Lecture 24, page 7

Object Invocation Models


Request type	Failure semantics	Description
Synchronous	At-most-once	Caller blocks until a response is returned or an exception is raised
One-way	Best effort delivery	Caller continues immediately without waiting for any response from the server
Deferred synchronous	At-most-once	Caller continues immediately and can later block until response is delivered

- Invocation models supported in CORBA.
 - Original model was RMI/RPC-like
 - Current CORBA versions support additional semantics

CS677: Distributed OS

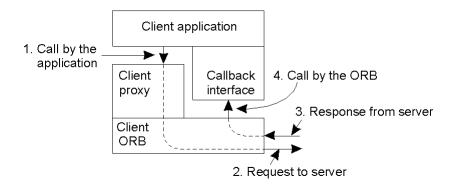
Event and Notification Services (1)

• The logical organization of suppliers and consumers of events, following the push-style model.

CS677: Distributed OS

Lecture 24, page 9

Event and Notification Services (2)


• The pull-style model for event delivery in CORBA.

CS677: Distributed OS

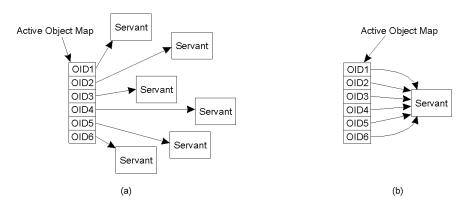
Messaging: Async. Method Invocation

· CORBA's callback model for asynchronous method invocation.

CS677: Distributed OS

Lecture 24, page 11

Messaging (2)



 CORBA'S polling model for asynchronous method invocation.

CS677: Distributed OS

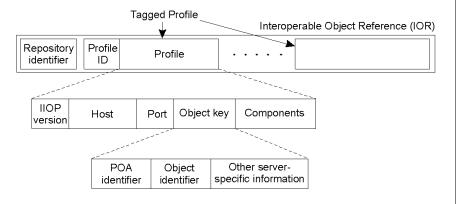
Portable Object Adaptor (1)

- POA: Wrappers for server-side code (makes code look like objects)
- a) The POA supports multiple servants.
- b) The POA supports a single servant.

CS677: Distributed OS

Lecture 24, page 13

Portable Object Adaptor (2)

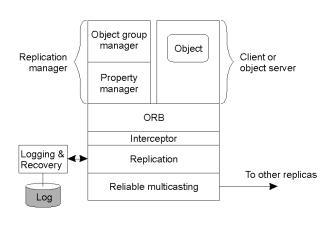

```
My_servant *my_object;  // Declare a reference to a C++ object CORBA::Objectid_var oid;  // Declare a CORBA identifier my_object = new MyServant;  // Create a new C++ object oid = poa ->activate_object (my_object);  // Register C++ object as CORBA OBJECT
```

Changing a C++ object into a CORBA object.

CS677: Distributed OS

Naming: Object References

• Interoperable object reference: language-independent techniques for referring to objects



CS677: Distributed OS

Lecture 24, page 15

An Example Architecture

• An example architecture of a fault-tolerant CORBA system.

Computer Science

CS677: Distributed OS