





















## Symmetric key exchange: trusted server

Problem: how do distributed entities agree on a key?
Assume: each entity has its own single key, which only it and trusted server know
Server:

will generate a one-time session key that A and B use to encrypt communication
will use A and B's single keys to communicate session key to A, B

Computer Science

CS677: Distributed OS

Lecture 23, page 12















| Secure Email                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                             |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| <ul> <li>Requirements:</li> <li>Secrecy</li> <li>Sender authent</li> <li>Message integi</li> <li>Receiver authet</li> <li>Secrecy</li> <li>Can use public</li> <li>Inefficient</li> <li>Use symmetric</li> <li>Alice gene</li> <li>Encrypt M</li> <li>Encrypt K</li> <li>Send K(M)</li> <li>Bob decrypt</li> </ul> | tication<br>rity<br>entication<br>keys to encrypt messages<br>for long messages<br>keys<br>rates a symmetric key K<br>essage M with K<br>with $E_B$<br>), $E_B(K)$<br>pts using his private key, gets K, de | ecrypts K(M)        |
| Computer Science                                                                                                                                                                                                                                                                                                   | CS677: Distributed OS                                                                                                                                                                                       | Lecture 23, page 20 |















## Security: conclusion key concerns: encryption • authentication key exchange • also: increasingly an important area as network connectivity increases • digital signatures, digital cash, authentication, increasingly important • an important social concern • further reading: - Crypto Policy Perspectives: S. Landau et al., Aug 1994 CACM Internet Security, R. Oppliger, CACM May 1997 \_ www.eff.org \_ Computer Science CS677: Distributed OS Lecture 23, page 28