
1

Computer Science Lecture 22, page 1

 Security in Distributed Systems

• Introduction

• Cryptography

• Authentication

• Key exchange

• Readings: Tannenbaum, chapter 8

 Ross/Kurose, Ch 7 (available online)

Computer Science Lecture 22, page 2

Network Security

Intruder may
• eavesdrop

• remove, modify, and/or insert messages

• read and playback messages

2

Computer Science Lecture 22, page 3

Issues

Important issues:

• cryptography: secrecy of info being transmitted

• authentication: proving who you are and having
correspondent prove his/her/its identity

Computer Science Lecture 22, page 4

Security in Computer
Networks

User resources:
• login passwords often transmitted unencrypted in

TCP packets between applications (e.g., telnet, ftp)

• passwords provide little protection

3

Computer Science Lecture 22, page 5

Security Issues

Network resources:
• often completely unprotected from intruder eavesdropping,

injection of false messages

• mail spoofs, router updates, ICMP messages, network
management messages

Bottom line:
• intruder attaching his/her machine (access to OS code, root

privileges) onto network can override many system-
provided security measures

• users must take a more active role

Computer Science Lecture 22, page 6

Encryption

plaintext: unencrypted message

ciphertext: encrypted form of message

Intruder may
• intercept ciphertext transmission

• intercept plaintext/ciphertext pairs

• obtain encryption decryption algorithms

4

Computer Science Lecture 22, page 7

Encryption

• Intruders and eavesdroppers in communication.

Computer Science Lecture 22, page 8

A simple encryption algorithm

Substitution cipher:

abcdefghijklmnopqrstuvwxyz

poiuytrewqasdfghjklmnbvczx
• replace each plaintext character in message with

matching ciphertext character:

plaintext: Charlotte, my love

ciphertext: iepksgmmy, dz sgby

5

Computer Science Lecture 22, page 9

Encryption Algo (contd)

• key is pairing between plaintext characters and
ciphertext characters

• symmetric key: sender and receiver use same key

• 26! (approx 10^26) different possible keys:
unlikely to be broken by random trials

• substitution cipher subject to decryption using
observed frequency of letters
– 'e' most common letter, 'the' most common word

Computer Science Lecture 22, page 10

DES: Data Encryption Standard

• encrypts data in 64-bit chunks

• encryption/decryption algorithm is a published
standard
– everyone knows how to do it

• substitution cipher over 64-bit chunks: 56-bit key
determines which of 56! substitution ciphers used
– substitution: 19 stages of transformations, 16 involving

functions of key

6

Computer Science Lecture 22, page 11

Symmetric Cryptosystems: DES (1)

a) The principle of DES

b) Outline of one encryption round

Computer Science Lecture 22, page 12

Symmetric Cryptosystems: DES (2)

• Details of per-round key generation in DES.

7

Computer Science Lecture 22, page 13

Key Distribution Problem

Problem: how do communicant agree on symmetric key?
– N communicants implies N keys

Trusted agent distribution:
– keys distributed by centralized trusted agent

– any communicant need only know key to communicate with
trusted agent

– for communication between i and j, trusted agent will provide a
key

Computer Science Lecture 22, page 14

Key Distribution

We will cover in more detail shortly

8

Computer Science Lecture 22, page 15

Public Key Cryptography

• separate encryption/decryption keys
– receiver makes known (!) its encryption key

– receiver keeps its decryption key secret

• to send to receiver B, encrypt message M using
B's publicly available key, EB
– send EB(M)

• to decrypt, B applies its private decrypt key DB to
receiver message:
– computing DB(EB(M)) gives M

Computer Science Lecture 22, page 16

Public Key Cryptography

• knowing encryption key does not help with decryption; decryption
is a non-trivial inverse of encryption

• only receiver can decrypt message

Question: good encryption/decryption algorithms

9

Computer Science Lecture 22, page 17

RSA: public key
encryption/decryption

RSA: a public key algorithm for encrypting/decrypting

Entity wanting to receive encrypted messages:

• choose two prime numbers, p, q greater than 10^100

• compute n=pq and z = (p-1)(q-1)

• choose number d which has no common factors with z

• compute e such that ed = 1 mod z, i.e.,

 integer-remainder((ed) / ((p-1)(q-1))) = 1, i.e.,

 ed = k(p-1)(q-1) +1

• three numbers:

– e, n made public

– d kept secret

Computer Science Lecture 22, page 18

RSA (continued)

to encrypt:

• divide message into blocks, {b_i} of size j: 2^j < n

• encrypt: encrypt(b_i) = b_I^e mod n

to decrypt:

• b_i = encrypt(b_i)^d

to break RSA:

• need to know p, q, given pq=n, n known

• factoring 200 digit n into primes takes 4 billion years using known
methods

10

Computer Science Lecture 22, page 19

RSA example

• choose p=3, q=11, gives n=33, (p-1)(q-
1)=z=20

• choose d = 7 since 7 and 20 have no common
factors

• compute e = 3, so that ed = k(p-1)(q-1)+1 (note:
k=1 here)

Computer Science Lecture 22, page 20

Further notes on RSA
why does RSA work?
• crucial number theory result: if p, q prime then
 b_i^((p-1)(q-1)) mod pq = 1
• using mod pq arithmetic:
(b^e)^d = b^{ed}

 = b^{k(p-1)(q-1)+1} for some k

 = b b^(p-1)(q-1) b^(p-1)(q-1) ... b^(p-1)(q-1)

 = b 1 1 ... 1

 = b
Note: we can also encrypt with d and encrypt with e.
• this will be useful shortly

11

Computer Science Lecture 22, page 21

How to break RSA?
Brute force: get B's public key
• for each possible b_i in plaintext, compute b_i^e
• for each observed b_i^e, we then know b_i
• moral: choose size of b_i "big enough"

Computer Science Lecture 22, page 22

Breaking RSA

man-in-the-middle: intercept keys, spoof
identity:

