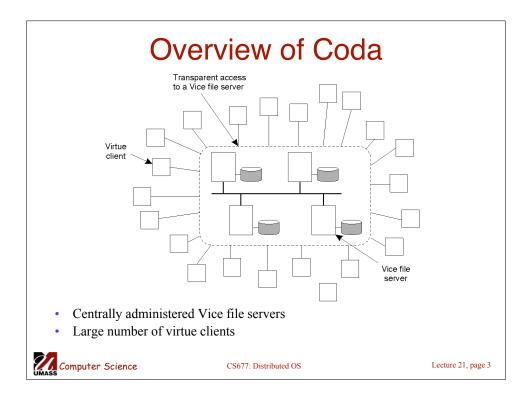
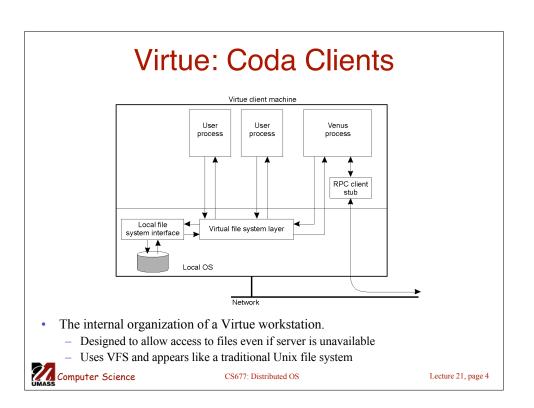
Today: Coda, xFS

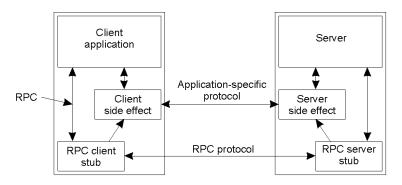
- Case Study: Coda File System
- Brief overview of other recent file systems
 - -xFS
 - Log structured file systems

CS677: Distributed OS


Lecture 21, page 1

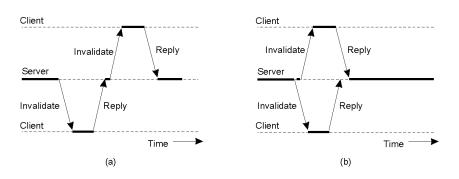

Coda

- Coda: descendent of the Andrew file system at CMU
 - Andrew designed to serve a large (global community)
- Salient features:
 - Support for disconnected operations
 - Desirable for mobile users
 - Support for a large number of users



CS677: Distributed OS

Communication in Coda


- Coda uses RPC2: a sophisticated *reliable* RPC system
 - Start a new thread for each request, server periodically informs client it is still working on the request
- RPC2 supports *side-effects*: application-specific protocols
 - Useful for video streaming [where RPCs are less useful]
- RPC2 also has multicast support

CS677: Distributed OS

Lecture 21, page 5

Communication: Invalidations

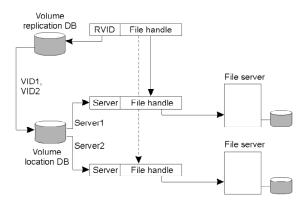
- a) Sending an invalidation message one at a time.
- b) Sending invalidation messages in parallel.

Can use MultiRPCs [Parallel RPCs] or use Multicast

- Fully transparent to the caller and callee [looks like normal RPC]

CS677: Distributed OS

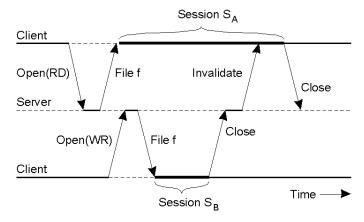
Naming inherited from server's name space Client A Server Client B Exported directory mounted by client Network


- Clients in Coda have access to a single shared name space
- Files are grouped into *volumes* [partial subtree in the directory structure]
 - Volume is the basic unit of mounting
 - Namespace: /afs/filesrv.cs.umass.edu [same namespace on all client; different from NFS]
 - Name lookup can cross mount points: support for detecting crossing and automounts

CS677: Distributed OS

Lecture 21, page 7

File Identifiers



- Each file in Coda belongs to exactly one volume
 - Volume may be replicated across several servers
 - Multiple logical (replicated) volumes map to the same physical volume
 - 96 bit file identifier = 32 bit RVID + 64 bit file handle

CS677: Distributed OS

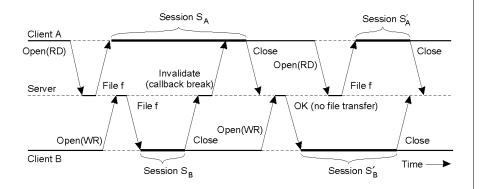
Sharing Files in Coda

- Transactional behavior for sharing files: similar to share reservations in NFS
 - File open: transfer entire file to client machine [similar to delegation]
 - Uses session semantics: each session is like a transaction
 - · Updates are sent back to the server only when the file is closed

CS677: Distributed OS

Lecture 21, page 9

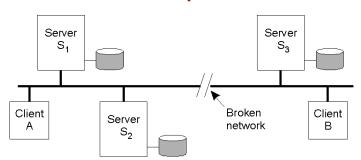
Transactional Semantics


File-associated data	Read?	Modified?
File identifier	Yes	No
Access rights	Yes	No
Last modification time	Yes	Yes
File length	Yes	Yes
File contents	Yes	Yes

- Network partition: part of network isolated from rest
 - Allow conflicting operations on replicas across file partitions
 - Reconcile upon reconnection
 - Transactional semantics => operations must be serializable
 - Ensure that operations were serializable after thay have executed
 - Conflict => force manual reconciliation

CS677: Distributed OS

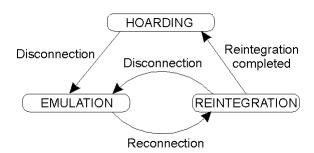
Client Caching


- Cache consistency maintained using callbacks
 - Server tracks all clients that have a copy of the file [provide *callback promise*]
 - Upon modification: send invalidate to clients

CS677: Distributed OS

Lecture 21, page 11

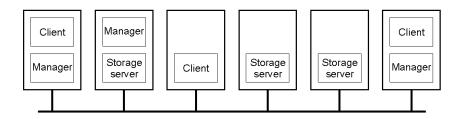
Server Replication



- Use replicated writes: read-once write-all
 - Writes are sent to all AVSG (all accessible replicas)
- How to handle network partitions?
 - Use optimistic strategy for replication
 - Detect conflicts using a Coda version vector
 - Example: [2,2,1] and [1,1,2] is a conflict \Rightarrow manual reconciliation

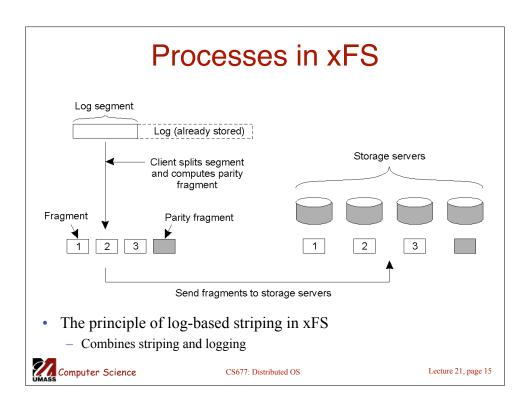
CS677: Distributed OS

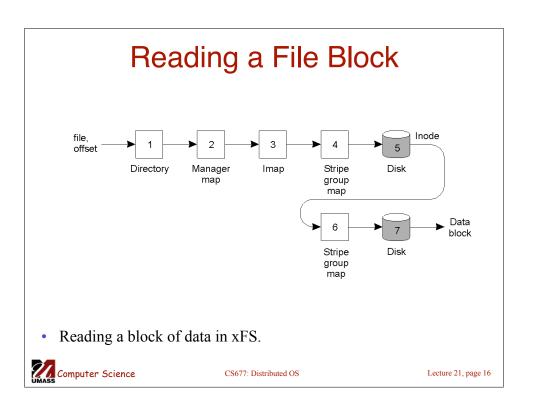
Disconnected Operation


- The state-transition diagram of a Coda client with respect to a volume.
- Use hoarding to provide file access during disconnection
 - Prefetch all files that may be accessed and cache (hoard) locally
 - If AVSG=0, go to emulation mode and reintegrate upon reconnection

CS677: Distributed OS

Lecture 21, page 13


Overview of xFS.



- Key Idea: fully distributed file system [serverless file system]
- xFS: x in "xFS" => no server
- Designed for high-speed LAN environments

CS677: Distributed OS

xFS Naming

Data structure	Description
Manager map	Maps file ID to manager
Imap	Maps file ID to log address of file's inode
Inode	Maps block number (i.e., offset) to log address of block
File identifier	Reference used to index into manager map
File directory	Maps a file name to a file identifier
Log addresses	Triplet of stripe group, ID, segment ID, and segment offset
Stripe group map	Maps stripe group ID to list of storage servers

• Main data structures used in xFS.

CS677: Distributed OS