
1

CS677: Distributed OSComputer Science Lecture 18, page 1

Last Class: Fault Tolerance

• Basic concepts and failure models

• Failure masking using redundancy

• Agreement in presence of faults
– Two army problem

– Byzantine generals problem

CS677: Distributed OSComputer Science Lecture 18, page 2

Today: More on Fault Tolerance

• Reliable communication
– One-one communication

– One-many communication

• Distributed commit
– Two phase commit

– Three phase commit

• Failure recovery
– Checkpointing

– Message logging

2

CS677: Distributed OSComputer Science Lecture 18, page 3

Reliable One-One Communication
• Issues were discussed in Lecture 3

– Use reliable transport protocols (TCP) or handle at the application layer
• RPC semantics in the presence of failures
• Possibilities

– Client unable to locate server
– Lost request messages
– Server crashes after receiving request
– Lost reply messages
– Client crashes after sending request

CS677: Distributed OSComputer Science Lecture 18, page 4

Reliable One-Many Communication

•Reliable multicast
– Lost messages => need to

retransmit

•Possibilities
– ACK-based schemes

• Sender can become
bottleneck

– NACK-based schemes

3

CS677: Distributed OSComputer Science Lecture 18, page 5

Atomic Multicast

•Atomic multicast: a guarantee that all
process received the message or none at all

– Replicated database example

•Problem: how to handle process crashes?

•Solution: group view
– Each message is uniquely associated

with a group of processes

• View of the process group when
message was sent

• All processes in the group should
have the same view (and agree on
it)

Virtually Synchronous Multicast

CS677: Distributed OSComputer Science Lecture 18, page 6

Implementing Virtual Synchrony in Isis

a) Process 4 notices that process 7 has crashed, sends a view change

b) Process 6 sends out all its unstable messages, followed by a flush message

c) Process 6 installs the new view when it has received a flush message from everyone
else

4

CS677: Distributed OSComputer Science Lecture 18, page 7

Distributed Commit

• Atomic multicast example of a more general problem
– All processes in a group perform an operation or not at all

– Examples:

• Reliable multicast: Operation = delivery of a message

• Distributed transaction: Operation = commit transaction

• Problem of distributed commit
– All or nothing operations in a group of processes

• Possible approaches
– Two phase commit (2PC) [Gray 1978]

– Three phase commit

CS677: Distributed OSComputer Science Lecture 18, page 8

Two Phase Commit
•Coordinator process coordinates
the operation

•Involves two phases
– Voting phase: processes vote on

whether to commit

– Decision phase: actually commit
or abort

5

CS677: Distributed OSComputer Science Lecture 18, page 9

Implementing Two-Phase Commit

• Outline of the steps taken by the coordinator in a
two phase commit protocol

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {
 wait for any incoming vote;
 if timeout {
 while GLOBAL_ABORT to local log;
 multicast GLOBAL_ABORT to all participants;
 exit;
 }
 record vote;
}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{
 write GLOBAL_COMMIT to local log;
 multicast GLOBAL_COMMIT to all participants;
} else {
 write GLOBAL_ABORT to local log;
 multicast GLOBAL_ABORT to all participants;
}

CS677: Distributed OSComputer Science Lecture 18, page 10

Implementing 2PC
actions by participant:

write INIT to local log;
wait for VOTE_REQUEST from coordinator;
if timeout {
 write VOTE_ABORT to local log;
 exit;
}
if participant votes COMMIT {
 write VOTE_COMMIT to local log;
 send VOTE_COMMIT to coordinator;
 wait for DECISION from coordinator;
 if timeout {
 multicast DECISION_REQUEST to other
participants;
 wait until DECISION is received; /* remain blocked */
 write DECISION to local log;
 }
 if DECISION == GLOBAL_COMMIT
 write GLOBAL_COMMIT to local log;
 else if DECISION == GLOBAL_ABORT
 write GLOBAL_ABORT to local log;
} else {
 write VOTE_ABORT to local log;
 send VOTE ABORT to coordinator;
}

actions for handling decision requests:
/*executed by separate thread */

while true {
 wait until any incoming DECISION_REQUEST
is received; /* remain blocked */
 read most recently recorded STATE from the
local log;
 if STATE == GLOBAL_COMMIT
 send GLOBAL_COMMIT to requesting

participant;
 else if STATE == INIT or STATE ==
GLOBAL_ABORT
 send GLOBAL_ABORT to requesting
participant;
 else
 skip; /* participant remains blocked */

6

CS677: Distributed OSComputer Science Lecture 18, page 11

Three-Phase Commit

Two phase commit: problem if coordinator crashes (processes block)
Three phase commit: variant of 2PC that avoids blocking

CS677: Distributed OSComputer Science Lecture 18, page 12

Recovery

• Techniques thus far allow failure handling

• Recovery: operations that must be performed after a
failure to recover to a correct state

• Techniques:
– Checkpointing:

• Periodically checkpoint state

• Upon a crash roll back to a previous checkpoint with a
consistent state

7

CS677: Distributed OSComputer Science Lecture 18, page 13

Independent Checkpointing

• Each processes periodically checkpoints independently of other
processes

• Upon a failure, work backwards to locate a consistent cut

• Problem: if most recent checkpoints form inconsistenct cut, will need
to keep rolling back until a consistent cut is found

• Cascading rollbacks can lead to a domino effect.

CS677: Distributed OSComputer Science Lecture 18, page 14

Coordinated Checkpointing

• Take a distributed snapshot [discussed in Lec 11]

• Upon a failure, roll back to the latest snapshot
– All process restart from the latest snapshot

8

CS677: Distributed OSComputer Science Lecture 18, page 15

Message Logging

• Checkpointing is expensive
– All processes restart from previous consistent cut
– Taking a snapshot is expensive
– Infrequent snapshots => all computations after previous

snapshot will need to be redone [wasteful]

• Combine checkpointing (expensive) with message
logging (cheap)
– Take infrequent checkpoints
– Log all messages between checkpoints to local stable storage
– To recover: simply replay messages from previous checkpoint

• Avoids recomputations from previous checkpoint

