
1

CS677: Distributed OSComputer Science Lecture 15, page 1

Last Class: Consistency Models

• Need for replication

• Data-centric consistency
– Strict, linearizable, sequential, causal, FIFO

CS677: Distributed OSComputer Science Lecture 15, page 2

Today: Implementation Issues

• Replica placement

• Use web caching as an illustrative example

• Distribution protocols
– Invalidate versus updates

– Push versus Pull

– Cooperation between replicas

2

CS677: Distributed OSComputer Science Lecture 15, page 3

Replica Placement

• Permanent replicas (mirroring)

• Server-initiated replicas (push caching)

• Client-initiated replicas (pull/client caching)

CS677: Distributed OSComputer Science Lecture 15, page 4

Web Caching

• Example of the web to illustrate caching and replication issues
– Simpler model: clients are read-only, only server updates data

browser Web Proxy
cache

request

response

request

response

Web
server

browser
Web
server

request

response

3

CS677: Distributed OSComputer Science Lecture 15, page 5

Consistency Issues

• Web pages tend to be updated over time
– Some objects are static, others are dynamic

– Different update frequencies (few minutes to few weeks)

• How can a proxy cache maintain consistency of cached
data?
– Send invalidate or update

– Push versus pull

CS677: Distributed OSComputer Science Lecture 15, page 6

Push-based Approach

• Server tracks all proxies that have requested objects

• If a web page is modified, notify each proxy

• Notification types
– Indicate object has changed [invalidate]

– Send new version of object [update]

• How to decide between invalidate and updates?
– Pros and cons?

– One approach: send updates for more frequent objects,
invalidate for rest

proxy
Web
server

push

4

CS677: Distributed OSComputer Science Lecture 15, page 7

Push-based Approaches

• Advantages
– Provide tight consistency [minimal stale data]

– Proxies can be passive

• Disadvantages
– Need to maintain state at the server

• Recall that HTTP is stateless

• Need mechanisms beyond HTTP

– State may need to be maintained indefinitely

• Not resilient to server crashes

CS677: Distributed OSComputer Science Lecture 15, page 8

Pull-based Approaches

• Proxy is entirely responsible for maintaining consistency

• Proxy periodically polls the server to see if object has
changed
– Use if-modified-since HTTP messages

• Key question: when should a proxy poll?
– Server-assigned Time-to-Live (TTL) values

• No guarantee if the object will change in the interim

proxy
Web
server

poll

response

5

CS677: Distributed OSComputer Science Lecture 15, page 9

Pull-based Approach: Intelligent Polling

• Proxy can dynamically determine the refresh interval
– Compute based on past observations

• Start with a conservative refresh interval

• Increase interval if object has not changed between two
successive polls

• Decrease interval if object is updated between two polls

• Adaptive: No prior knowledge of object characteristics
needed

CS677: Distributed OSComputer Science Lecture 15, page 10

Pull-based Approach

• Advantages
– Implementation using HTTP (If-modified-Since)

– Server remains stateless

– Resilient to both server and proxy failures

• Disadvantages
– Weaker consistency guarantees (objects can change between

two polls and proxy will contain stale data until next poll)

• Strong consistency only if poll before every HTTP response

– More sophisticated proxies required

– High message overhead

6

CS677: Distributed OSComputer Science Lecture 15, page 11

A Hybrid Approach: Leases
• Lease: duration of time for which server agrees to notify proxy of

modification

• Issue lease on first request, send notification until expiry
– Need to renew lease upon expiry

• Smooth tradeoff between state and messages exchanged
– Zero duration => polling, Infinite leases => server-push

• Efficiency depends on the lease duration

Client Proxy Server

Get + lease req

Reply + lease
read

Invalidate/update

CS677: Distributed OSComputer Science Lecture 15, page 12

Policies for Leases Duration

• Age-based lease
– Based on bi-modal nature of object lifetimes
– Larger the expected lifetime longer the lease

• Renewal-frequency based
– Based on skewed popularity
– Proxy at which objects is popular gets longer lease

• Server load based
– Based on adaptively controlling the state space
– Shorter leases during heavy load

7

CS677: Distributed OSComputer Science Lecture 15, page 13

Cooperative Caching

• Caching infrastructure can have multiple web proxies
– Proxies can be arranged in a hierarchy or other structures

• Overlay network of proxies: content distribution network

– Proxies can cooperate with one another

• Answer client requests

• Propagate server notifications

CS677: Distributed OSComputer Science Lecture 15, page 14

 Hierarchical Proxy Caching

Examples: Squid, Harvest

Server

Parent

HTTP

HTTP Read A
1

ICPICP

ICP

2

HTTP

3

Clients

Leaf Caches

8

CS677: Distributed OSComputer Science Lecture 15, page 15

Locating and Accessing Data

• Lookup is local
• Hit at most 2 hops
• Miss at most 2 hops (1 extra on wrong hint)

Properties

(A,X)

Node
X

Server
for B

Clients

Caches
Read A

Get A

Read
B

Get BNode
Y

Minimize cache hops on hit Do not slow down misses

Node Z

CS677: Distributed OSComputer Science Lecture 15, page 16

CDN Issues

• Which proxy answers a client request?
– Ideally the “closest” proxy

– Akamai uses a DNS-based approach

• Propagating notifications
– Can use multicast or application level multicast to reduce

overheads (in push-based approaches)

• Active area of research
– Numerous research papers available

