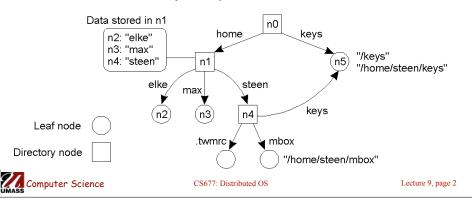
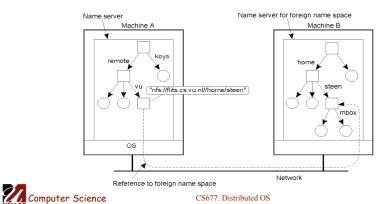
Today: Naming

- Names are used to share resources, uniquely identify entities and refer to locations
- Need to map from name to the entity it refers to
 - E.g., Browser access to www.cnn.com
 - Use name resolution
- Differences in naming in distributed and non-distributed systems
 - Distributed systems: naming systems is itself distributed
- How to name mobile entities?



CS677: Distributed OS

Lecture 9, page 1


Example: File Names

- Hierarchical directory structure (DAG)
 - Each file name is a unique path in the DAG
 - Resolution of /home/steen/mbox a traversal of the DAG
- File names are *human-friendly*

Resolving File Names across Machines

- Remote files are accessed using a node name, path name
- NFS mount protocol: map a remote node onto local DAG
 - Remote files are accessed using local names! (location independence)
 - OS maintains a mount table with the mappings

Name Space Distribution


- Naming in large distributed systems
 - System may be global in scope (e.g., Internet, WWW)
- Name space is organized hierarchically
 - Single root node (like naming files)
- Name space is distributed and has three logical layers
 - Global layer: highest level nodes (root and a few children)
 - Represent groups of organizations, rare changes
 - Administrational layer: nodes managed by a single organization
 - Typically one node per department, infrequent changes
 - Managerial layer: actual nodes
 - · Frequent changes
 - Zone: part of the name space managed by a separate name server

CS677: Distributed OS

Lecture 9, page 4

Name Space Distribution Example

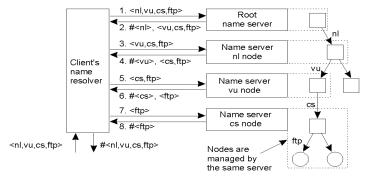
An example partitioning of the DNS name space, including Internet-accessible files, into three layers.

CS677: Distributed OS

Lecture 9, page 5

Name Space Distribution

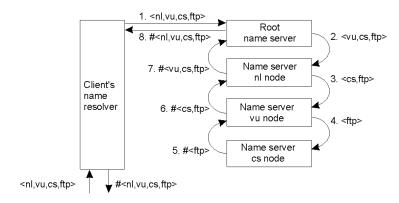
Item	Global	Administrational	Managerial
Geographical scale of network	Worldwide	Organization	Department
Total number of nodes	Few	Many	Vast numbers
Responsiveness to lookups	Seconds	Milliseconds	Immediate
Update propagation	Lazy	Immediate	Immediate
Number of replicas	Many	None or few	None
Is client-side caching applied?	Yes	Yes	Sometimes


- A comparison between name servers for implementing nodes from a large-scale name space partitioned into a global layer, as an administrational layer, and a managerial layer.
- The more stable a layer, the longer are the lookups valid (and can be cached longer)

CS677: Distributed OS

Implementing Name Resolution

- Iterative name resolution
 - Start with the root
 - Each layer resolves as much as it can and returns address of next name server


Computer Science

CS677: Distributed OS

Lecture 9, page 7

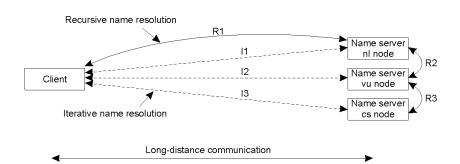
Recursive Name Resolution

- Recursive name resolution
 - Start at the root
 - Each layer resolves as much as it can and hands the rest to the next layer

Computer Science

CS677: Distributed OS

Which is better?


- Recursive name resolution puts heavy burden on gobal layer nodes
 - Burden is heavy => typically support only iterative resolution
- Advantages of recursive name resolution
 - Caching possible at name servers (gradually learn about others)
 - Caching improves performance
 - Use time-to-live values to impose limits on caching duration
 - Results from higher layers can be cached for longer periods
 - Iterative: only caching at client possible

CS677: Distributed OS

Lecture 9, page 9

Communication costs

- The comparison between recursive and iterative name resolution with respect to communication costs
 - Recursive may be cheaper

CS677: Distributed OS

The DNS Name Space

Type of record	Associated entity	Description	
SOA	Zone	Holds information on the represented zone	
А	Host	Contains an IP address of the host this node represents	
MX	Domain	Refers to a mail server to handle mail addressed to this node	
SRV	Domain	Refers to a server handling a specific service	
NS	Zone	Refers to a name server that implements the represented zone	
CNAME	Node	Symbolic link with the primary name of the represented node	
PTR	Host	Contains the canonical name of a host	
HINFO	Host	Holds information on the host this node represents	
TXT	Any kind	Contains any entity-specific information considered useful	

• The most important types of resource records forming the contents of nodes in the DNS name space.

CS677: Distributed OS

Lecture 9, page 11

DNS Implementation

• An excerpt from the DNS database for the zone cs.vu.nl.

Name	Record type	Record value	
cs.vu.nl	SOA	star (1999121502,7200,3600,2419200,86400)	
cs.vu.nl	NS	star.cs.vu.nl	
cs.vu.nl	NS	top.cs.vu.nl	
cs.vu.nl	NS	solo.cs.vu.nl	
cs.vu.nl	TXT	"Vrije Universiteit - Math. & Comp. Sc."	
cs.vu.nl	MX	1 zephyr.cs.vu.nl	
cs.vu.nl	MX	2 tornado.cs.vu.nl	
cs.vu.nl	MX	3 star.cs.vu.nl	
star.cs.vu.nl	HINFO	Sun Unix	
star.cs.vu.nl	MX	1 star.cs.vu.nl	
star.cs.vu.nl	MX	10 zephyr.cs.vu.nl	
star.cs.vu.nl	Α	130.37.24.6	
star.cs.vu.nl	A	192.31.231.42	
zephyr.cs.vu.nl	HINFO	Sun Unix	
zephyr.cs.vu.nl	MX	1 zephyr.cs.vu.nl	
zephyr.cs.vu.nl	MX	2 tornado.cs.vu.nl	
zephyr.cs.vu.nl	A	192.31.231.66	
www.cs.vu.nl	CNAME	soling.cs.vu.nl	
ftp.cs.vu.nl	CNAME	soling.cs.vu.nl	
soling.cs.vu.nl	HINFO	Sun Unix	
soling.cs.vu.nl	MX	1 soling.cs.vu.nl	
soling.cs.vu.nl	MX	10 zephyr.cs.vu.nl	
soling.cs.vu.nl	A	130.37.24.11	
laser.cs.vu.nl	HINFO	PC MS-DOS	
laser.cs.vu.nl	A	130.37.30.32	
vucs-das.cs.vu.nl	PTR	0.26.37.130.in-addr.arpa	
vucs-das.cs.vu.nl	A -	130.37.26.0	

X.500 Directory Service

- OSI Standard
- Directory service: special kind of naming service where:
 - Clients can lookup entities based on attributes instead of full name
 - Real-world example: Yellow pages: look for a plumber

CS677: Distributed OS

Lecture 9, page 13

The X.500 Name Space (1)

Attribute	Abbr.	Value
Country	С	NL
Locality	L	Amsterdam
Organization	L	Vrije Universiteit
OrganizationalUnit	OU	Math. & Comp. Sc.
CommonName	CN	Main server
Mail_Servers		130.37.24.6, 192.31.231,192.31.231.66
FTP_Server		130.37.21.11
WWW_Server		130.37.21.11

• A simple example of a X.500 directory entry using X.500 naming conventions.

CS677: Distributed OS

The X.500 Name Space (2)

Computer Science

Part of the directory

information tree.

CS677: Distributed OS

Lecture 9, page 15

LDAP

- Lightweight Directory Access Protocol (LDAP)
 - X.500 too complex for many applications
 - LDAP: Simplified version of X.500
 - Widely used for Internet services
 - Application-level protocol, uses TCP
 - Lookups and updates can use strings instead of OSI encoding
 - Use master servers and replicas servers for performance improvements
 - Example LDAP implementations:
 - Active Directory (Windows 2000)
 - Novell Directory services
 - iPlanet directory services (Netscape)
 - Typical uses: user profiles, access privileges, network resources

CS677: Distributed OS