CS677: Programming Assignment 2
Renaldo Part Deux: A Server-less Game

Distributed Operating Systems Spring 2003
Department of Computer Science
University of Massachusetts, Amherst, MA 01003 USA

shenoy@cs.umass.edu

1 The problem

This project has tree purposes, namely to gain experience with. ..
e issues concerning distributed consistency
e transactional techniques

e leader election algorithms

clock synchronization

You are encouraged to re-use your work from your first programming assignment
as much as possible. In this project, you need to design a server-less version of
your centralized multi-player game from programming assignment 1.

2 Introduction

After learning of the wonderful work of CS677 students on their Renaldo game
concept, Fundingo game corporation has decided to pick up the Renaldo game
project. A meeting with Dr. Jane Dasani, Fundingo’s Chief Scientist and proud
UMass-CompSci Alumna, has resulted in the edict, ”Hey, make it scale.” After
hours of technical discussion, the descision was made. ”Dude, go server-less.”

3 The concept

In programming assignment 1, you implemented a centralized client-server ap-
proach. In the client-server game system, clients issue requests to a centralized



server which implements game dynamics and computes global game state. In
a server-less environment, each client maintains its own game state. In this as-
signment, we no longer employ a centralized game server. A server-less gaming
environment can be thought of as a peer network. A peer environment has many
advantages over a centralized approach. These include robustness and scalabil-
ity. A peer environment is more robust because a single failure only affects the
failing node. A peer environment is more scalable because it induces a natural
partition of load (computation of state) among participants in the game. As is
the case with many distributed systems issues, these advantages come at a cost.

Because each client computes its own game state, there is a real possiblility
for inconsistency across each client participating in the game. That is, two
participants may come to a different "understanding” of the current state of
the game. For example, two Renaldo clients can incorrectly think that s/he has
consumed the same food item in the same grid square.

Because of this, each participant must implement a means of coping with
computation of distributed state. Simply put, the participants (or peers) in the
game must reach agreement or consensus on a number of things. Consensus is a
recurring theme you will see in distribted systems in areas such as leader election,
distributed synchronization, and transactions [3]. Generally, in a distributed
system, consensus is reached among participants by the exchange of messages.
The format, meaning, and response to these messages are our protocol. When
you think of what is a client and what is a server, think about what role each
plays. A client initiates a request. A server receives a request, performs some
computation and returns the reply. A peer can assume both a client and server
role. It acts as a client when it initiates requests. It also acts as a server when
it receives requests, performs a computation and returns a response.

4 Game Details

To simplify things a little, your game will be limited to 4 players. Each player
maintains a copy of the grid world including the grid squares, and walls(figure
1). When a participant makes a move, he must inform his peers in the game.
This is to be accomplished using application-level multicast. By this approach,
a list of peers on the network is maintained and a unicast message is sent to each
(figure 2). Thus, each peer implements an application-level multicast client to
perform application-level multicast (ALMC).

One of the peers is to be designated as the chairperson (chair). The chair
is responsible for managing the placement of food and publication items in
the department. Thus, the chair implements a food/publication client while
each peer implements a food/publication server. Renaldo’s advisor, Prof. Rhea
Sarch, has gone on sabattical for a semester. While this means that Renaldo’s
advisor will not be present (at least for programming assignment 2), Renaldo
must still “read” publication items in addition to eating food and drinking coffee.
When the chair places a food item or publication, his "move” is ALMC’ed to
peers on the network. The game begins with a single peer. As new peers join



Pasar )

Game
Simte

Figure 1: Server-less game

Figure 2: Application-level multicasting of moves



Ojolefelo

Incoming request g F‘:t-1,t

Current State

Figure 3: State changes due to request messages

the game, they must be informed of the current game state. It is also the job of
the chair to bring the new graduate student up to date. The department chair
also implements a bootstrapping service used to bring newly joining peers up
to date on game state. Thus, each peer implements a bootstrap client while
the department chair implements a bootstrap server. It is assumed that peers
perform graceful joins and leaves for the game. When a new peer joins the
network, it discover’s the department chair and engages in a bootstrapping
protocol to acquire state from the department chair. As update requests are
serviced by a peer, its local state moves through a sequence sg, si,ss,... of
states. Define s; to be the state of a peer at timestep ¢t. Given a request r;;, a
state transition (s;, s;) is effected (figure 3).

If the the current state (at timestep t) is such that s; # s;, then the request is
a conflicting message. When this happens, the peer has reached an inconsistent
state. Assuming a total ordering on request messages, system state must be
reverted to the last known consistent state s;. In transaction processing, this is
known as rolling back system state (figure 4). To implement rollback, a log of
state history must be kept. Because we are not concerned about durability of
system state, this log does not have to be made persistent. An in-memory log of
up to 100 messages is adequate. Exactly how logging is implemented depends
on the type of actions performed.
The two classes of actions with which we are concerned are known in transaction
processing as unprotected and real actions [2]. This distinction is made based on
wether or not the change in state brought about by an action can be reversed or
undone by executing an operation or compensating action similar to the original
action. In our server, actions are unprotected. For an unprotected action, the
system requires knowledge of the compensating action ¢; and a piece of data d;.
Associated with execution of each action a;, a tuple < o;,d; > is appended to a
list. Given a current state and data item, o; performs the functions necessary to
return system state from some state sjtos;—1 where s;-11s the state just before
a; executed or 0;(s;j,d;) = s;_1. Consider a "move left” action performed on a
move request server which caused Renaldo to move from position (2,2) to (2, 3)
and his energy level to change from 25 to 24 in a peer’s local state. Associated



OVHHE

Current State

L R
Incoming request = 2.3

Figure 4: Roll back state upon conflicting message

with this action is an operation undoLeft and a data item < 1, < 2,2 >> where
the < 2,2 > is Renaldo’s location before the move and the 1 is the number
of units decremented from Renaldo’s energy level. The undoLeft operation
will set Renaldo’s position to < 2,2 > and add 1 to his energy level. Given
a sequence of such tuples < og,dy >,< 01,d; >,...,< 0yn,d, > and a current
state s¢, a rollback can be performed by iterating through the list and computing
0i(8¢,d;) = si—1 sucessively for each tuple in the list. This list is our undo log.
Tterating through it as mentioned is rollback. An example of inconsistent state
is a request to place vegetable#1 in position (5,5). If a peer’s current state s;
is such that vegetable#1 is currently in position (1,1), then the request is a
conflicting message.

5 Reaching Consensus

Consensus must be reached on the total ordering of request messages. Mecha-
nisms covered in class include Lamporth and Vector clocks. You are to choose
one of these mechanisms to ensure a total ordering on request messages ex-
changed among peers. The department chair is a single point of failure. In the
event that the department chair crashes, a new chair must be elected. A number
of leader election algorithms have been covered in class. You are to choose one
of these mechanisms to ensure that all peers in the network agree on who is the
department chair.

6 Protocols

The following protocols are to be designed and implemented. . .

e discovery of chair



bootstrapping

e moves in grid world

food/publication placement

application-level multicasting

7 The assignment

You are to implement the mentioned consensus items, protocol items, and roll-
back mechanism. To reduce complexity, you may reduce the size of the grid to
50 x 50. Remember to start thinking about this early and to spend your time
focussing on the distributed sytems issues.

8 Extra Credit

Application-level multicast does not scale with the number of peers. In a dis-
tributed system, we have a physical network which is modeled as a graph. In
this graph, a node represents a host on which a peer runs and an edge represents
the physical interconnect between nodes. This graph is sometimes referred to as
a host graph. Among the peers we maintain ”logical” connections through an
RPC mechanism. This is modeled by a graph where nodes are peers and edges
are logical connections. This is sometimes called a task graph. An overlay net-
work is a task graph built upon or embedded in a host graph. For extra credit,
construct and employ an overlay network for the distribution of request mes-
sages as an alternative to using application-level multicasting. This approach is
more scaleable and efficient then having each peer send n — 1 unicast messages.

References

[1] C. Diot and L. Gautier. A distributed architecture for multiplayer interactive
applications on the internet, 1999.

[2] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufman, San Fransisco, CA, 1993.

[3] N. Lynch. Distributed Algorithms. Morgan Kaufman, San Fransisco, CA,
1996.



