Security in Distributed Systems

- Introduction
- Cryptography
- Authentication
- Key exchange
- Readings: Tannenbaum, chapter 8

Ross/Kurose, Ch 7 (available online)

Network Security

Intruder may

- eavesdrop
- remove, modify, and/or insert messages
- read and playback messages

Issues

Important issues:

- cryptography: secrecy of info being transmitted
- authentication: proving who you are and having correspondent prove his/her/its identity

Security in Computer Networks

User resources:

- login passwords often transmitted unencrypted in TCP packets between applications (e.g., telnet, ftp)

Security Issues

Network resources:

- often completely unprotected from intruder eavesdropping, injection of false messages
- mail spoofs, router updates, ICMP messages, network management messages

Bottom line:

- intruder attaching his/her machine (access to OS code, root privileges) onto network can override many systemprovided security measures
- users must take a more active role

plaintext: unencrypted message
ciphertext: encrypted form of message

Intruder may

- intercept ciphertext transmission
- intercept plaintext/ciphertext pairs
- obtain encryption decryption algorithms

A simple encryption algorithm

Substitution cipher:

abcdefghijklmnopqrstuvwxyz
poiuytrewqasdfghjklmnbvczx

- replace each plaintext character in message with matching ciphertext character:
plaintext: Charlotte, my love
ciphertext: iepksgmmy, dz sgby

Encryption Algo (contd)

- key is pairing between plaintext characters and ciphertext characters
- symmetric key: sender and receiver use same key
- 26 ! (approx $10^{\wedge} 26$) different possible keys: unlikely to be broken by random trials
- substitution cipher subject to decryption using observed frequency of letters
- 'e' most common letter, 'the' most common word

DES: Data Encryption Standard

- encrypts data in 64-bit chunks
- encryption/decryption algorithm is a published standard
- everyone knows how to do it
- substitution cipher over 64-bit chunks: 56-bit key determines which of 56 ! substitution ciphers used
- substitution: 19 stages of transformations, 16 involving functions of key

Symmetric Cryptosystems: DES (1)

(a)

(b)
a) The principle of DES
b) Outline of one encryption round

Symmetric Cryptosystems: DES (2)

- Details of per-round key generation in DES.

Key Distribution Problem

Problem: how do communicant agree on symmetric key?

- N communicants implies N keys

Trusted agent distribution:

- keys distributed by centralized trusted agent
- any communicant need only know key to communicate with trusted agent
- for communication between i and j, trusted agent will provide a key

Key Distribution

We will cover in more detail shortly

Public Key Cryptography

- separate encryption/decryption keys
- receiver makes known (!) its encryption key
- receiver keeps its decryption key secret
- to send to receiver B, encrypt message M using B's publicly available key, EB
- send EB(M)
- to decrypt, B applies its private decrypt key DB to receiver message:
- computing $\mathrm{DB}(\mathrm{EB}(\mathrm{M})$) gives M

Public Key Cryptography

- knowing encryption key does not help with decryption; decryption is a non-trivial inverse of encryption
- only receiver can decrypt message

Question: good encryption/decryption algorithms

RSA: public key encryption/decryption

RSA: a public key algorithm for encrypting/decrypting
Entity wanting to receive encrypted messages:

- choose two prime numbers, p, q greater than $10^{\wedge} 100$
- compute $n=p q$ and $z=(p-1)(q-1)$
- choose number d which has no common factors with z
- compute e such that $e d=1 \bmod z$, i.e.,

$$
\begin{aligned}
& \text { integer-remainder }((e d) /((p-1)(q-1)))=1 \text {, i.e., } \\
& e d=k(p-1)(q-1)+1
\end{aligned}
$$

- three numbers:
- e, n made public
$-d$ kept secret

RSA (continued)

to encrypt:

- divide message into blocks, $\left\{b_{-} i\right\}$ of size $j: 2^{\wedge} j<n$
- encrypt: $\operatorname{encrypt}\left(b_{-} i\right)=b_{-} I^{\wedge} e \bmod n$
to decrypt:
- $b_{-} i=\operatorname{encrypt}\left(b _i\right)^{\wedge} d$
to break RSA:
- need to know p, q, given $p q=n, n$ known
- factoring 200 digit n into primes takes 4 billion years using known methods
\qquad

RSA example

- choose $p=3, q=11$, gives $n=33,(p-1)(q-$ 1) $=z=20$
- choose $d=7$ since 7 and 20 have no common factors
- compute $e=3$, so that $e d=k(p-1)(q-1)+1$ (note: $k=1$ here)

Example

plaintext		e=3	ciphertext
char	$\#$	$\#^{\wedge} 3$	\#^3 $^{\text {nod } 33}$
S	19	6859	28
U	21	9261	21
N	14	2744	5

cipherte xt		d=7	plaintex t
c	$c^{\wedge 7}$	$c^{\wedge 7}$ mod	char
		33	
28	13492928512	19	S
21	1801	21	N

Further notes on RSA

why does RSA work?

- crucial number theory result: if p, q prime then

$$
b_{-} i^{\wedge}((p-1)(q-1)) \bmod p q=1
$$

- using $\bmod p q$ arithmetic:
$\left(b^{\wedge} e\right)^{\wedge} d=b^{\wedge}\{e d\}$

$$
\begin{aligned}
& =b^{\wedge}\{k(p-1)(q-1)+1\} \text { for some } k \\
& =b b^{\wedge}(p-1)(q-1) b^{\wedge}(p-1)(q-1) \ldots b^{\wedge}(p-1)(q-1) \\
& =\mathrm{b} 11 \ldots 1 \\
& =b
\end{aligned}
$$

Note: we can also encrypt with d and encrypt with e.

- this will be useful shortly

How to break RSA?

Brute force: get B's public key

- for each possible $b_{-} i$ in plaintext, compute $b_{-} i^{\wedge} e$
- for each observed $b i^{\wedge} e$, we then know $b{ }_{-} i$
- moral: choose size of $b _i$ "big enough"

Breaking RSA

man-in-the-middle: intercept keys, spoof identity:

