Security in Distributed Systems

- Introduction
- Cryptography
- Authentication
- Key exchange
- Readings: Tannenbaum, chapter 8
 Ross/Kurose, Ch 7 (available online)

Lecture 22, page 1

Network Security

Intruder may

- eavesdrop
- remove, modify, and/or insert messages
- read and playback messages

Issues

Important issues:

- cryptography: secrecy of info being transmitted
- *authentication:* proving who you are and having correspondent prove his/her/its identity

Lecture 22, page 3

Security in Computer Networks

User resources:

• login passwords often transmitted unencrypted in TCP packets between applications (e.g., telnet, ftp)

Computer Science

Security Issues

Network resources:

- often completely unprotected from intruder eavesdropping, injection of false messages
- mail spoofs, router updates, ICMP messages, network management messages

Bottom line:

- intruder attaching his/her machine (access to OS code, root privileges) onto network can override many systemprovided security measures
- users must take a more active role

Lecture 22, page 5

plaintext: unencrypted message

ciphertext: encrypted form of message

Intruder may

- intercept ciphertext transmission
- intercept plaintext/ciphertext pairs
- obtain encryption decryption algorithms

Computer Science

A simple encryption algorithm

Substitution cipher:

abcdefghijklmnopqrstuvwxyz

poiuytrewqasdfghjklmnbvczx

• replace each plaintext character in message with matching ciphertext character:

plaintext: Charlotte, my love

ciphertext: iepksgmmy, dz sgby

Computer Science

Lecture 22 page 7

Encryption Algo (contd)

- key is pairing between plaintext characters and ciphertext characters
- symmetric key: sender and receiver use same key
- 26! (approx 10^26) different possible keys: unlikely to be broken by random trials
- substitution cipher subject to decryption using observed frequency of letters
 - 'e' most common letter, 'the' most common word

DES: Data Encryption Standard

- encrypts data in 64-bit chunks
- encryption/decryption algorithm is a published standard
 - everyone knows how to do it
- substitution cipher over 64-bit chunks: 56-bit key determines which of 56! substitution ciphers used
 - substitution: 19 stages of transformations, 16 involving functions of key

Lecture 22, page 9

Symmetric Cryptosystems: DES (1)

a) The principle of DES

b) Outline of one encryption round

Computer Science

Symmetric Cryptosystems: DES (2)

Details of per-round key generation in DES.

Lecture 22, page 11

Key Distribution Problem

Problem: how do communicant agree on symmetric key?

- N communicants implies N keys

Trusted agent distribution:

- keys distributed by centralized trusted agent
- any communicant need only know key to communicate with trusted agent
- for communication between i and j, trusted agent will provide a key

Key Distribution

We will cover in more detail shortly

Lecture 22, page 13

Public Key Cryptography

- separate encryption/decryption keys
 - receiver makes *known* (!) its encryption key
 - receiver keeps its decryption key secret
- to send to receiver B, encrypt message M using B's publicly available key, EB
 - send EB(M)
- to decrypt, B applies its private decrypt key DB to receiver message:
 - computing DB(EB(M)) gives M

Public Key Cryptography

- knowing encryption key does not help with decryption; decryption is a non-trivial inverse of encryption
- only receiver can decrypt message

Question: good encryption/decryption algorithms

Lecture 22, page 15

RSA: public key encryption/decryption

RSA: a public key algorithm for encrypting/decrypting

Entity wanting to receive encrypted messages:

- choose two prime numbers, p, q greater than 10^{100}
- compute n=pq and z=(p-1)(q-1)
- choose number d which has no common factors with z
- compute e such that ed = 1 mod z, i.e.,
 integer-remainder((ed)/((p-1)(q-1))) = 1, i.e.,
 ed = k(p-1)(q-1) +1
- three numbers:
 - − *e*, *n* made public
 - d kept secret

RSA (continued)

to encrypt:

- divide message into blocks, $\{b_i\}$ of size $j: 2^j < n$
- encrypt: $encrypt(b_i) = b_I^e \mod n$

to decrypt:

• $b_i = encrypt(b_i)^d$

to break RSA:

- need to know p, q, given pq=n, n known
- factoring 200 digit *n* into primes takes 4 billion years using known methods

Lecture 22, page 17

RSA example

- choose p=3, q=11, gives n=33, (p-1)(q-1)=z=20
- choose d = 7 since 7 and 20 have no common factors
- compute e = 3, so that ed = k(p-1)(q-1)+1 (note: k=1 here)

Computer Science

Example

plaintext		e=3	ciphertext
char	#	#^3	#^3 mod 33
S	19	6859	28
U	21	9261	21
N	14	2744	5

cipherte xt		d=7	plaintex t
С	c^7	c^7 mod	char
		33	
28	13492928512	19	S
21	1801	21	N

Lecture 22, page 19

Further notes on RSA

why does RSA work?

- crucial number theory result: if p, q prime then $b_i^{(p-1)(q-1)} \mod pq = 1$
- using mod pq arithmetic:

$$(b^e)^d = b^e$$

=
$$b^{k(p-1)(q-1)+1}$$
 for some k

$$= b b^{(p-1)}(q-1) b^{(p-1)}(q-1) \dots b^{(p-1)}(q-1)$$

$$= b 1 1 ... 1$$

=b

Note: we can also encrypt with d and encrypt with e.

• this will be useful shortly

How to break RSA?

Brute force: get B's public key

- for each possible b_i in plaintext, compute b_i^e
- for each observed b_i^e , we then know b_i
- moral: choose size of b_i "big enough"

Lecture 22, page 21

Breaking RSA

man-in-the-middle: intercept keys, spoof identity:

Computer Science