
1

CS677: Distributed OSComputer Science Lecture 19, page 1

Last Class: Fault tolerance

• Reliable communication
– One-one communication
– One-many communication

• Distributed commit
– Two phase commit
– Three phase commit

• Failure recovery
– Checkpointing
– Message logging

CS677: Distributed OSComputer Science Lecture 19, page 2

Recovery

• Techniques thus far allow failure handling
• Recovery: operations that must be performed after a

failure to recover to a correct state
• Techniques:

– Checkpointing:
• Periodically checkpoint state
• Upon a crash roll back to a previous checkpoint with a

consistent state

2

CS677: Distributed OSComputer Science Lecture 19, page 3

Independent Checkpointing

• Each processes periodically checkpoints independently of other
processes

• Upon a failure, work backwards to locate a consistent cut
• Problem: if most recent checkpoints form inconsistent cut, will need

to keep rolling back until a consistent cut is found
• Cascading rollbacks can lead to a domino effect.

CS677: Distributed OSComputer Science Lecture 19, page 4

Coordinated Checkpointing

• Take a distributed snapshot [discussed in Lec. 11]

• Upon a failure, roll back to the latest snapshot
– All process restart from the latest snapshot

3

CS677: Distributed OSComputer Science Lecture 19, page 5

Message Logging

• Checkpointing is expensive
– All processes restart from previous consistent cut
– Taking a snapshot is expensive
– Infrequent snapshots => all computations after previous

snapshot will need to be redone [wasteful]
• Combine checkpointing (expensive) with message

logging (cheap)
– Take infrequent checkpoints
– Log all messages between checkpoints to local stable storage
– To recover: simply replay messages from previous checkpoint

• Avoids recomputations from previous checkpoint

CS677: Distributed OSComputer Science Lecture 19, page 6

Today: Distributed File Systems

• Overview of stand-alone (UNIX) file systems

• Issues in distributed file systems

• Next two classes: case studies of distributed file systems
• NFS
• Code
• xFS
• Log-structured file systems (time permitting)

4

CS677: Distributed OSComputer Science Lecture 19, page 7

File System Basics

• File: named collection of logically related data
– Unix file: an uninterpreted sequence of bytes

• File system:
– Provides a logical view of data and storage functions
– User-friendly interface
– Provides facility to create, modify, organize, and delete files
– Provides sharing among users in a controlled manner
– Provides protection

CS677: Distributed OSComputer Science Lecture 19, page 8

File Types and Attributes

• File types
– Directory, regular file
– Character special file: used for serial I/O
– Block special file: used to model disks [buffered I/O]
– Strongly v/s weakly typed files

• File attributes: varies from OS to OS
– Name, type, location, size, protection info, password, owner,

creator, time and date of creation, last modification, access
• File operations:

– Create, delete, open, close, read, write, append, get/set
attributes

5

CS677: Distributed OSComputer Science Lecture 19, page 9

Directories

• Tree structure organization most common

• Access to a file specified by absolute file name
• User can assign a directory as the current working directory

– Access to files can be specified by relative name relative to the current
directory

• Possible organizations: linear list of files, hash table

CS677: Distributed OSComputer Science Lecture 19, page 10

Unix File System Review

• User file: linear array of bytes. No records, no file types
• Directory: special file not directly writable by user
• File structure: directed acyclic graph [directories may not be

shared, files may be shared (why?)]
• Directory entry for each file

– File name
– inode number
– Major device number
– Minor device number

• All inodes are stored at a special location on disk [super block]
– Inodes store file attributes and a multi-level index that has a list of disk

block locations for the file

6

CS677: Distributed OSComputer Science Lecture 19, page 11

Inode Structure

• Fields
– Mode
– Owner_ID, group_id
– Dir_file
– Protection bits
– Last access time, last write time, last inode time
– Size, no of blocks
– Ref_cnt
– Address[0], … address[14]

• Multi-level index: 12 direct blocks, one single, double, and
triple indirect blocks

CS677: Distributed OSComputer Science Lecture 19, page 12

Distributed File Systems

• File service: specification of what the file system offers
– Client primitives, application programming interface (API)

• File server: process that implements file service
– Can have several servers on one machine (UNIX, DOS,…)

• Components of interest
– File service
– Directory service

7

CS677: Distributed OSComputer Science Lecture 19, page 13

File Service

• Remote access model
– Work done at the server

• Stateful server (e.g., databases)
• Consistent sharing (+)
• Server may be a bottleneck (-)
• Need for communication (-)

•Upload/download mode
– Work done at the client

•Stateless server
•Simple functionality (+)
•Moves files/blocks, need storage (-)

CS677: Distributed OSComputer Science Lecture 19, page 14

Directory Service

•Create/delete files
•Hierarchical directory structure

•Arbitrary graph

8

CS677: Distributed OSComputer Science Lecture 19, page 15

System Structure: Server Type

• Stateless server
– No information is kept at server between client requests
– All information needed to service a requests must be provided

by the client with each request (what info?)
– More tolerant to server crashes

• Stateful server
– Server maintains information about client accesses
– Shorted request messages
– Better performance
– Idempotency easier
– Consistency is easier to achieve

CS677: Distributed OSComputer Science Lecture 19, page 16

System Structure

• Client v/s server implementations possibilities
– Same process implements both functionality
– Different processes, same machine
– Different machines (a machine can either be client or server)

• Directory/file service – same server?
– Different server processes: cleaner, more flexible, more overhead
– Same server: just the opposite

9

CS677: Distributed OSComputer Science Lecture 19, page 17

Naming Issues

•Path name lookup can be iterative or recursive
– /usr/freya/bin/netscape

CS677: Distributed OSComputer Science Lecture 19, page 18

Naming Issues: Mounting

• Mounting: file system can be mounted to a node of the
directory

• Depending on the actual mounts, different clients see
different view of the distributed file system

10

CS677: Distributed OSComputer Science Lecture 19, page 19

File Sharing Semantics
• Unix semantics

– Read after write returns value written
• System enforces absolute time ordering on all operations
• Always returns most recent value
• Changes immediately visible to all processes
• Difficult to enforce in distributed file systems unless all

access occur at server (with no client caching)
• Session semantics

– Local changes only visible to process that opened file
– File close => changes made visible to all processes
– Allows local caching of file at client
– Two nearly simultaneous file closes => one overwrites other?

CS677: Distributed OSComputer Science Lecture 19, page 20

Other File Sharing Semantics

• Immutable files
– Create/delete only; no modifications allowed
– Delete file in use by another process

• Atomic transactions
– Access to files protected by transactions
– Serializable access
– Costly to implement

