Last Class: Fault Tolerance

 Basic concepts and failure models

* Failure masking using redundancy

« Agreement in presence of faults
— Two army problem

— Byzantine generals problem
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Today: More on Fault Tolerance

» Reliable communication
— One-one communication
— One-many communication
* Distributed commit
— Two phase commit
— Three phase commit
* Failure recovery
— Checkpointing
— Message logging
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Reliable One-One Communication

* Issues were discussed in Lecture 3
— Use reliable transport protocols (TCP) or handle at the application layer
* RPC semantics in the presence of failures
* Possibilities
— Client unable to locate server
Lost request messages
— Server crashes after receiving request
— Lost reply messages
— Client crashes after sending request
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Reliable One-Many Communication
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Atomic Multicast

*Atomic multicast: a guarantee that all
process received the message or none at all

Reliable multicast by muttiple

. P1 joins the group  point-fo-point messages P3crashes F3 rejoins
— Replicated database example i
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— Each message is uniquely associated
. Partial multicast Time —
with a group of processes rom B3 is dincarded

* View of the process group when
message was sent

» All processes in the group should
have the same view (and agree on

it)
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Virtually Synchronous Multicast
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Implementing Virtual Synchrony in Isis

Unstable
message

Flush message
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Process 4 notices that process 7 has crashed, sends a view change

Process 6 sends out all its unstable messages, followed by a flush message

Process 6 installs the new view when it has received a flush message from everyone
else
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— Examples:

 Possible approaches

— Three phase commit
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Distributed Commit

* Atomic multicast example of a more general problem

— All processes in a group perform an operation or not at all

* Reliable multicast: Operation = delivery of a message
* Distributed transaction: Operation = commit transaction
* Problem of distributed commit

— All or nothing operations in a group of processes

— Two phase commit (2PC) [Gray 1978 ]
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Two Phase Commit

*Coordinator process coordinates

the operation

*Involves two phases

— Voting phase: processes vote on
whether to commit

— Decision phase: actually commit

or abort
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Implementing Two-Phase Commit

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {
wait for any incoming vote;
if timeout {
while GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;
exit;

record vote;

}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{
write GLOBAL_COMMIT to local log;
multicast GLOBAL_COMMIT to all participants;
}else {
write GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;
}

* OQutline of the steps taken by the coordinator in a
two phase commit protocol
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Implementing 2PC

actions by participant:

write INIT to local log;

actions for handling decision requests:
wait for VOTE_REQUEST from coordinator;

[*executed by separate thread */

if timeout {
write VOTE_ABORT to local log; while true {
) exit; wait until any incoming DECISION_REQUEST
if participant votes COMMIT { 1 reCZIVSd; : rematlln bIOCkcejdd /STATE f th
write VOTE_COMMIT to local log; read most recently recorde rom the
send VOTE_COMMIT to coordinator; local log;
wait for DECISION from coordinator; if STATE == GLOBAL_COMMIT
if timeout { send GLOBAL_COMMIT to requesting
multicast DECISION_REQUEST to other participants; participant;

wqit until DECISION is received; /* remain blocked */  g|ge if STATE == INIT or STATE ==
write DECISION to local log; GLOBAL ABORT

i}f DECISION == GLOBAL COMMIT send GLOBAL_ABORT to requesting
write GLOBAL_COMMIT to local log; participant;
else if DECISION == GLOBAL_ABORT else
write GLOBAL_ABORT to local log; skip; /* participant remains blocked */
}else {

write VOTE_ABORT to local log;
send VOTE ABORT to coordinator;

}
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Three-Phase Commit
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Two phase commit: problem if coordinator crashes (processes block)
Three phase commit: variant of 2PC that avoids blocking
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Recovery

 Techniques thus far allow failure handling

« Recovery: operations that must be performed after a
failure to recover to a correct state

* Techniques:
— Checkpointing:
* Periodically checkpoint state

* Upon a crash roll back to a previous checkpoint with a
consistent state
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Independent Checkpointing

Initial state Checkpoint

P1

WAV

Time —»

» Each processes periodically checkpoints independently of other
processes

» Upon a failure, work backwards to locate a consistent cut

» Problem: if most recent checkpoints form inconsistenct cut, will need
to keep rolling back until a consistent cut is found

» Cascading rollbacks can lead to a domino effect.
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Coordinated Checkpointing

« Take a distributed snapshot [discussed in Lec 11]

« Upon a failure, roll back to the latest snapshot
— All process restart from the latest snapshot
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Message Logging

* Checkpointing is expensive
— All processes restart from previous consistent cut
— Taking a snapshot is expensive
— Infrequent snapshots => all computations after previous
snapshot will need to be redone [wasteful]
« Combine checkpointing (expensive) with message
logging (cheap)
— Take infrequent checkpoints
— Log all messages between checkpoints to local stable storage
— To recover: simply replay messages from previous checkpoint
* Avoids recomputations from previous checkpoint
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