Last Class: Fault Tolerance

 Basic concepts and failure models

* Failure masking using redundancy

« Agreement in presence of faults
— Two army problem

— Byzantine generals problem

m Computer Science CS677: Distributed OS
UMASS

Lecture 18, page 1

Today: More on Fault Tolerance

» Reliable communication
— One-one communication
— One-many communication
* Distributed commit
— Two phase commit
— Three phase commit
* Failure recovery
— Checkpointing
— Message logging

m Computer Science CS677: Distributed OS
UMASS

Lecture 18, page 2

Reliable One-One Communication

* Issues were discussed in Lecture 3
— Use reliable transport protocols (TCP) or handle at the application layer
* RPC semantics in the presence of failures
* Possibilities
— Client unable to locate server
Lost request messages
— Server crashes after receiving request
— Lost reply messages
— Client crashes after sending request

REQ Server Server REQ Server
P Receive Receive » Receive
Execute Execute Crash|
‘E Reply Crash N.O(EI%_P___
(a (b) (c)
m Computer Science CS677: Distributed OS Lecture 18, page 3
UMASS

Reliable One-Many Communication

Recewer missed

message #24
. . Sender Recever Recever 1 Recewer Receiver
*Reliable multicast oy | D25 '
butfer oy Last= 24 Last=24 Last=23 Last= 24
— Lost messages => need tc]) s Wz s
. i Iy A I
retransmit L L L L I
i
o1 eqe, e (@)
*Possibilities Sancs Recoier Recover Recewer _Recaier
— ACK-based schemes Last=25 | |Last=24 | |Last=23 | |Last=24
{5 W25 W25 25 25|
 Sender can become rewe Ak E T T o i i i
‘I | ACK 25 | Missed 24] ACK zsl
bottleneck ——
)
- NACK-baSCd SChemes Sender receives Receivers suppress their feedback
only one NACK
Sender Recever y Recaivery Receiver W Receiver
i T=3 T=4 T=1 T=2
7 NACK] NACK NACK | NACK
& & & f
b e
MNetwark

m Computer Science CS677: Distributed OS Lecture 18, page 4
UMASS

Atomic Multicast

*Atomic multicast: a guarantee that all
process received the message or none at all

Reliable multicast by muttiple

. P1 joins the group point-fo-point messages P3crashes F3 rejoins
— Replicated database example i
pr 4 « “d ¥
P Y L
*Problem: how to handle process crashes? == 1 4 4
b
o R »
4
*Solution: group view Py —! T | LA K 4
. . 6= P1P2P3PY G={PIP2P4 ' G={P1P2PIPY
— Each message is uniquely associated
. Partial multicast Time —
with a group of processes rom B3 is dincarded

* View of the process group when
message was sent

» All processes in the group should
have the same view (and agree on

it)

m Computer Science
UMASS

Virtually Synchronous Multicast

CS677: Distributed OS

Lecture 18, page 5

Implementing Virtual Synchrony in Isis

Unstable
message

Flush message

'6_\} &i‘\) [m=]

a)
b)
c)

m Computer Science
UMASS

Process 4 notices that process 7 has crashed, sends a view change

Process 6 sends out all its unstable messages, followed by a flush message

Process 6 installs the new view when it has received a flush message from everyone
else

CS677: Distributed OS Lecture 18, page 6

— Examples:

 Possible approaches

— Three phase commit

m Computer Science CS677: Distributed OS
UMASS

Distributed Commit

* Atomic multicast example of a more general problem

— All processes in a group perform an operation or not at all

* Reliable multicast: Operation = delivery of a message
* Distributed transaction: Operation = commit transaction
* Problem of distributed commit

— All or nothing operations in a group of processes

— Two phase commit (2PC) [Gray 1978]

Lecture 18, page 7

Two Phase Commit

*Coordinator process coordinates

the operation

*Involves two phases

— Voting phase: processes vote on
whether to commit

— Decision phase: actually commit

or abort
(T
Commit ~ -
Vote-request ¢
[waT)
Vote-abort b _ Vote-commit
Globa.l.-abort} . 4 Global-commit
[ABORT | [coMmIT |
(@)

m Computer Science
UMASS

CS677: Distributed OS

conedinatar bornal
wike gurpave
log
wiite ready i
aulect replies from
all subansrates
e ko recoiet
wite cemmitt
&l
commit
S

Vote-request)
Vote-abof_(____..——" INT)

- Vote-request
Vote-commit W

I;: (READY |
| Global-abort -~ - Global-commit
s ACK
VACK L o a e
M| ABORT | | COMMlT_:'

(b)

Lecture 18, page 8

Implementing Two-Phase Commit

actions by coordinator:

while START _2PC to local log;
multicast VOTE_REQUEST to all participants;
while not all votes have been collected {
wait for any incoming vote;
if timeout {
while GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;
exit;

record vote;

}
if all participants sent VOTE_COMMIT and coordinator votes COMMIT{
write GLOBAL_COMMIT to local log;
multicast GLOBAL_COMMIT to all participants;
}else {
write GLOBAL_ABORT to local log;
multicast GLOBAL_ABORT to all participants;
}

* OQutline of the steps taken by the coordinator in a
two phase commit protocol
m Computer Science CS677: Distributed OS Lecture 18, page 9
UMASS

Implementing 2PC

actions by participant:

write INIT to local log;

actions for handling decision requests:
wait for VOTE_REQUEST from coordinator;

[*executed by separate thread */

if timeout {
write VOTE_ABORT to local log; while true {
) exit; wait until any incoming DECISION_REQUEST
if participant votes COMMIT { 1 reCZIVSd; : rematlln bIOCkcejdd /STATE f th
write VOTE_COMMIT to local log; read most recently recorde rom the
send VOTE_COMMIT to coordinator; local log;
wait for DECISION from coordinator; if STATE == GLOBAL_COMMIT
if timeout { send GLOBAL_COMMIT to requesting
multicast DECISION_REQUEST to other participants; participant;

wqit until DECISION is received; /* remain blocked */ g|ge if STATE == INIT or STATE ==
write DECISION to local log; GLOBAL ABORT

i}f DECISION == GLOBAL COMMIT send GLOBAL_ABORT to requesting
write GLOBAL_COMMIT to local log; participant;
else if DECISION == GLOBAL_ABORT else
write GLOBAL_ABORT to local log; skip; /* participant remains blocked */
}else {

write VOTE_ABORT to local log;
send VOTE ABORT to coordinator;

}
m Computer Science CS677: Distributed OS Lecture 18, page 10
UMASS

Three-Phase Commit

Vote-request

(T Vote-abort _—" T)
commit | " Vote-request
Vote-request ¥ S/ Vote-commit .
[waTr) f [READY |
Vote-abort 7 \’ Vote-commit | Global- abort 7 ' Prepare-commit
Global- abo:t‘/ \A Prepare-commit \ f\CK N) ! Ready-commit
ABDRT |PRECOMMIT| "f ABORT ,,' [_F’RECOMMIT
Ready-commit Global-commit
Global-commit y ACK
COMMIT) (commiT |
(=) (b)

Two phase commit: problem if coordinator crashes (processes block)
Three phase commit: variant of 2PC that avoids blocking

m Computer Science CS677: Distributed OS Lecture 18, page 11
UMASS

Recovery

 Techniques thus far allow failure handling

« Recovery: operations that must be performed after a
failure to recover to a correct state

* Techniques:
— Checkpointing:
* Periodically checkpoint state

* Upon a crash roll back to a previous checkpoint with a
consistent state

m Computer Science CS677: Distributed OS Lecture 18, page 12
UMASS

Independent Checkpointing

Initial state Checkpoint

P1

WAV

Time —»

» Each processes periodically checkpoints independently of other
processes

» Upon a failure, work backwards to locate a consistent cut

» Problem: if most recent checkpoints form inconsistenct cut, will need
to keep rolling back until a consistent cut is found

» Cascading rollbacks can lead to a domino effect.

? Computer Science CS677: Distributed OS Lecture 18, page 13
UMASS

Coordinated Checkpointing

« Take a distributed snapshot [discussed in Lec 11]

« Upon a failure, roll back to the latest snapshot
— All process restart from the latest snapshot

m Computer Science CS677: Distributed OS Lecture 18, page 14
UMASS

Message Logging

* Checkpointing is expensive
— All processes restart from previous consistent cut
— Taking a snapshot is expensive
— Infrequent snapshots => all computations after previous
snapshot will need to be redone [wasteful]
« Combine checkpointing (expensive) with message
logging (cheap)
— Take infrequent checkpoints
— Log all messages between checkpoints to local stable storage
— To recover: simply replay messages from previous checkpoint
* Avoids recomputations from previous checkpoint

m Computer Science CS677: Distributed OS Lecture 18, page 15
UMASS

