
1

CS677: Distributed OSComputer Science Lecture 17, page 1

Last Class: Weak Consistency

• Eventual Consistency and epidemic protocols

• Implementing consistency techniques
– Primary-based
– Replicated writes-based

• Quorum protocols

CS677: Distributed OSComputer Science Lecture 17, page 2

Gifford’s Quorum-Based Protocol

• Three examples of the voting algorithm:
a) A correct choice of read and write set
b) A choice that may lead to write-write conflicts
c) A correct choice, known as ROWA (read one, write all)

2

CS677: Distributed OSComputer Science Lecture 17, page 3

Today: Fault Tolerance

• Basic concepts in fault tolerance

• Masking failure by redundancy

• Process resilience

CS677: Distributed OSComputer Science Lecture 17, page 4

Motivation

• Single machine systems
– Failures are all or nothing

• OS crash, disk failures

• Distributed systems: multiple independent nodes
– Partial failures are also possible (some nodes fail)

• Question: Can we automatically recover from partial
failures?
– Important issue since probability of failure grows with number

of independent components (nodes) in the systems
– Prob(failure) = Prob(Any one component fails)=1-P(no failure)

3

CS677: Distributed OSComputer Science Lecture 17, page 5

A Perspective

• Computing systems are not very reliable
– OS crashes frequently (Windows), buggy software, unreliable

hardware, software/hardware incompatibilities
– Until recently: computer users were “tech savvy”

• Could depend on users to reboot, troubleshoot problems
– Growing popularity of Internet/World Wide Web

• “Novice” users
• Need to build more reliable/dependable systems

– Example: what is your TV (or car) broke down every day?
• Users don’t want to “restart” TV or fix it (by opening it up)

• Need to make computing systems more reliable

CS677: Distributed OSComputer Science Lecture 17, page 6

Basic Concepts

• Need to build dependable systems
• Requirements for dependable systems

– Availability: system should be available for use at any given
time

• 99.999 % availability (five 9s) => very small down times
– Reliability: system should run continuously without failure
– Safety: temporary failures should not result in a catastrophic

• Example: computing systems controlling an airplane,
nuclear reactor

– Maintainability: a failed system should be easy to repair

4

CS677: Distributed OSComputer Science Lecture 17, page 7

Basic Concepts (contd)

• Fault tolerance: system should provide services despite
faults
– Transient faults
– Intermittent faults
– Permanent faults

CS677: Distributed OSComputer Science Lecture 17, page 8

Failure Models

• Different types of failures.

A server may produce arbitrary responses at arbitrary timesArbitrary failure

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Response failure
Value failure
State transition failure

A server's response lies outside the specified time intervalTiming failure

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Omission failure
Receive omission
Send omission

A server halts, but is working correctly until it haltsCrash failure

DescriptionType of failure

5

CS677: Distributed OSComputer Science Lecture 17, page 9

Failure Masking by Redundancy

• Triple modular redundancy.

CS677: Distributed OSComputer Science Lecture 17, page 10

Process Resilience

• Handling faulty processes: organize several processes
into a group
– All processes perform same computation
– All messages are sent to all members of the group
– Majority need to agree on results of a computation
– Ideally want multiple, independent implementations of the

application (to prevent identical bugs)

• Use process groups to organize such processes

6

CS677: Distributed OSComputer Science Lecture 17, page 11

Flat Groups versus Hierarchical
Groups

Advantages and disadvantages?

CS677: Distributed OSComputer Science Lecture 17, page 12

Agreement in Faulty Systems
• How should processes agree on results of a computation?
• K-fault tolerant: system can survive k faults and yet

function
• Assume processes fail silently

– Need (k+1) redundancy to tolerant k faults

• Byzantine failures: processes run even if sick
– Produce erroneous, random or malicious replies

• Byzantine failures are most difficult to deal with
– Need ? Redundancy to handle Byzantine faults

7

CS677: Distributed OSComputer Science Lecture 17, page 13

Byzantine Faults

• Simplified scenario: two perfect processes with unreliable channel
– Need to reach agreement on a 1 bit message

• Two army problem: Two armies waiting to attack
– Each army coordinates with a messenger
– Messenger can be captured by the hostile army
– Can generals reach agreement?
– Property: Two perfect process can never reach agreement in presence of

unreliable channel

• Byzantine generals problem: Can N generals reach agreement
with a perfect channel?
– M generals out of N may be traitors

CS677: Distributed OSComputer Science Lecture 17, page 14

Byzantine Generals Problem

• Recursive algorithm by Lamport
• The Byzantine generals problem for 3 loyal generals and 1 traitor.
a) The generals announce their troop strengths (in units of 1 kilosoldiers).
b) The vectors that each general assembles based on (a)
c) The vectors that each general receives in step 3.

8

CS677: Distributed OSComputer Science Lecture 17, page 15

Byzantine Generals Problem Example

• The same as in previous slide, except now with 2 loyal generals and one traitor.
• Property: With m faulty processes, agreement is possible only if 2m+1 processes

function correctly [Lamport 82]
– Need more than two-thirds processes to function correctly

