
1

CS677: Distributed OSComputer Science Lecture 16, page 1

Last Class: Web Caching

• Use web caching as an illustrative example
• Distribution protocols

– Invalidate versus updates
– Push versus Pull
– Cooperation between replicas

CS677: Distributed OSComputer Science Lecture 16, page 2

Today: More on Consistency

• Eventual consistency and Epidemic protocols
• Consistency protocols

– Primary-based
– Replicated-write

• Putting it all together
– Final thoughts

2

CS677: Distributed OSComputer Science Lecture 16, page 3

Eventual Consistency

• Many systems: one or few processes perform updates
– How frequently should these updates be made available to other

read-only processes?

• Examples:
– DNS: single naming authority per domain
– Only naming authority allowed updates (no write-write conflicts)
– How should read-write conflicts (consistency) be addressed?
– NIS: user information database in Unix systems

• Only sys-admins update database, users only read data
• Only user updates are changes to password

CS677: Distributed OSComputer Science Lecture 16, page 4

Eventual Consistency

•Assume a replicated database with few updaters and many readers
•Eventual consistency: in absence of updates, all replicas converge
towards identical copies

– Only requirement: an update should eventually propagate to all replicas
– Cheap to implement: no or infrequent write-write conflicts
– Things work fine so long as user accesses same replica
– What if they don’t:

3

CS677: Distributed OSComputer Science Lecture 16, page 5

Client-centric Consistency Models

• Assume read operations by a single process P at two different
local copies of the same data store
– Four different consistency semantics

• Monotonic reads
– Once read, subsequent reads on that data items return same or more recent

values
• Monotonic writes

– A write must be propagated to all replicas before a successive write by the
same process

– Resembles FIFO consistency (writes from same process are processed in
same order)

• Read your writes: read(x) always returns write(x) by that process
• Writes follow reads: write(x) following read(x) will take place on

same or more recent version of x

CS677: Distributed OSComputer Science Lecture 16, page 6

Epidemic Protocols

• Used in Bayou system from Xerox PARC
• Bayou: weakly connected replicas

– Useful in mobile computing (mobile laptops)
– Useful in wide area distributed databases (weak connectivity)

• Based on theory of epidemics (spreading infectious diseases)
– Upon an update, try to “infect” other replicas as quickly as possible
– Pair-wise exchange of updates (like pair-wise spreading of a disease)
– Terminology:

• Infective store: store with an update it is willing to spread
• Susceptible store: store that is not yet updates

• Many algorithms possible to spread updates

4

CS677: Distributed OSComputer Science Lecture 16, page 7

Spreading an Epidemic

• Anti-entropy
– Server P picks a server Q at random and exchanges updates
– Three possibilities: only push, only pull, both push and pull
– Claim: A pure push-based approach does not help spread updates quickly

(Why?)
• Pull or initial push with pull work better

• Rumor mongering (aka gossiping)
– Upon receiving an update, P tries to push to Q
– If Q already received the update, stop spreading with prob 1/k
– Analogous to “hot” gossip items => stop spreading if “cold”
– Does not guarantee that all replicas receive updates

• Chances of staying susceptible: s= e-(k+1)(1-s)

CS677: Distributed OSComputer Science Lecture 16, page 8

Removing Data

• Deletion of data items is hard in epidemic protocols
• Example: server deletes data item x

– No state information is preserved
• Can’t distinguish between a deleted copy and no copy!

5

CS677: Distributed OSComputer Science Lecture 16, page 9

Implementation Issues

• Two techniques to implement consistency models
– Primary-based protocols

• Assume a primary replica for each data item
• Primary responsible for coordinating all writes

– Replicated write protocols
• No primary is assumed for a data item
• Writes can take place at any replica

CS677: Distributed OSComputer Science Lecture 16, page 10

Remote-Write Protocols

• Traditionally used in client-server systems

6

CS677: Distributed OSComputer Science Lecture 16, page 11

Remote-Write Protocols (2)

• Primary-backup protocol
– Allow local reads, sent writes to primary
– Block on write until all replicas are notified
– Implements sequential consistency

CS677: Distributed OSComputer Science Lecture 16, page 12

Local-Write Protocols (1)

• Primary-based local-write protocol in which a single copy is migrated between
processes.

– Limitation: need to track the primary for each data item

7

CS677: Distributed OSComputer Science Lecture 16, page 13

Local-Write Protocols (2)

• Primary-backup protocol in which the primary migrates to the
process wanting to perform an update

CS677: Distributed OSComputer Science Lecture 16, page 14

Replicated-write Protocols

• Relax the assumption of one primary
– No primary, any replica is allowed to update
– Consistency is more complex to achieve

• Quorum-based protocols
– Use voting to request/acquire permissions from replicas
– Consider a file replicated on N servers
– Update: contact at least (N/2+1) servers and get them to agree

to do update (associate version number with file)
– Read: contact majority of servers and obtain version number

• If majority of servers agree on a version number, read

8

CS677: Distributed OSComputer Science Lecture 16, page 15

Gifford’s Quorum-Based Protocol

• Three examples of the voting algorithm:
a) A correct choice of read and write set
b) A choice that may lead to write-write conflicts
c) A correct choice, known as ROWA (read one, write all)

CS677: Distributed OSComputer Science Lecture 16, page 16

Final Thoughts

• Replication and caching improve performance in
distributed systems

• Consistency of replicated data is crucial
• Many consistency semantics (models) possible

– Need to pick appropriate model depending on the application
– Example: web caching: weak consistency is OK since humans

are tolerant to stale information (can reload browser)
– Implementation overheads and complexity grows if stronger

guarantees are desired

