
1

CS677: Distributed OSComputer Science Lecture 14, page 1

Consistency and Replication

• Today:
– Introduction
– Consistency models

• Data-centric consistency models
• Client-centric consistency models

– Thoughts for the mid-term

CS677: Distributed OSComputer Science Lecture 14, page 2

Why replicate?

• Data replication: common technique in distributed systems
• Reliability

– If one replica is unavailable or crashes, use another
– Protect against corrupted data

• Performance
– Scale with size of the distributed system (replicated web servers)
– Scale in geographically distributed systems (web proxies)

• Key issue: need to maintain consistency of replicated data
– If one copy is modified, others become inconsistent

2

CS677: Distributed OSComputer Science Lecture 14, page 3

Object Replication

•Approach 1: application is responsible for replication
– Application needs to handle consistency issues

•Approach 2: system (middleware) handles replication
– Consistency issues are handled by the middleware
– Simplifies application development but makes object-specific solutions harder

CS677: Distributed OSComputer Science Lecture 14, page 4

Replication and Scaling

• Replication and caching used for system scalability
• Multiple copies:

– Improves performance by reducing access latency
– But higher network overheads of maintaining consistency
– Example: object is replicated N times

• Read frequency R, write frequency W
• If R<<W, high consistency overhead and wasted messages
• Consistency maintenance is itself an issue

– What semantics to provide?
– Tight consistency requires globally synchronized clocks!

• Solution: loosen consistency requirements
– Variety of consistency semantics possible

3

CS677: Distributed OSComputer Science Lecture 14, page 5

Data-Centric Consistency Models

• Consistency model (aka consistency semantics)
– Contract between processes and the data store

• If processes obey certain rules, data store will work correctly
– All models attempt to return the results of the last write for a read operation

• Differ in how “last” write is determined/defined

CS677: Distributed OSComputer Science Lecture 14, page 6

Strict Consistency

• Any read always returns the result of the most recent
write
– Implicitly assumes the presence of a global clock
– A write is immediately visible to all processes

• Difficult to achieve in real systems (network delays can be
variable)

4

CS677: Distributed OSComputer Science Lecture 14, page 7

Sequential Consistency

•Sequential consistency: weaker than strict consistency
– Assumes all operations are executed in some sequential order and each

process issues operations in program order
• Any valid interleaving is allowed
• All agree on the same interleaving
• Each process preserves its program order
• Nothing is said about “most recent write”

CS677: Distributed OSComputer Science Lecture 14, page 8

Linearizability

•Assumes sequential consistency and
– If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence
– Stronger than sequential consistency
– Difference between linearizability and serializbility?

• Granularity: reads/writes versus transactions

•Example:

z = 1;
print (x, y);

y = 1;
print (x, z);

x = 1;
print (y, z);

Process P3Process P2Process P1

5

CS677: Distributed OSComputer Science Lecture 14, page 9

Linearizability Example

• Four valid execution sequences for the processes of the previous
slide. The vertical axis is time.

y = 1;
x = 1;
z = 1;
print (x, z);
print (y, z);
print (x, y);

Prints: 111111

Signature:
111111

(d)

y = 1;
z = 1;
print (x, y);
print (x, z);
x = 1;
print (y, z);

Prints: 010111

Signature:
110101

(c)

x = 1;
y = 1;
print (x,z);
print(y, z);
z = 1;
print (x, y);

Prints: 101011

Signature:
101011

(b)

x = 1;
print ((y, z);
y = 1;
print (x, z);
z = 1;
print (x, y);

Prints: 001011

Signature:
001011

(a)

CS677: Distributed OSComputer Science Lecture 14, page 10

Causal consistency

• Causally related writes must be seen by all processes in
the same order.
– Concurrent writes may be seen in different orders on different

machines

Not permitted Permitted

6

CS677: Distributed OSComputer Science Lecture 14, page 11

Other models

• FIFO consistency: writes from a process are seen by
others in the same order. Writes from different processes
may be seen in different order (even if causally related)
– Relaxes causal consistency
– Simple implementation: tag each write by (Proc ID, seq #)

• Even FIFO consistency may be too strong!
– Requires all writes from a process be seen in order

• Assume use of critical sections for updates
– Send final result of critical section everywhere
– Do not worry about propagating intermediate results

• Assume presence of synchronization primitives to define
semantics

CS677: Distributed OSComputer Science Lecture 14, page 12

Other Models

• Weak consistency
– Accesses to synchronization variables associated with a data

store are sequentially consistent
– No operation on a synchronization variable is allowed to be

performed until all previous writes have been completed
everywhere

– No read or write operation on data items are allowed to be
performed until all previous operations to synchronization
variables have been performed.

• Entry and release consistency
– Assume shared data are made consistent at entry or exit

points of critical sections

7

CS677: Distributed OSComputer Science Lecture 14, page 13

Summary of Data-centric Consistency Models

(b)

Shared data pertaining to a critical region are made consistent when a critical region is entered.Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

(a)

All processes see writes from each other in the order they were used. Writes from different processes
may not always be seen in that orderFIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in timeSequential

All processes must see all shared accesses in the same order. Accesses are furthermore ordered
according to a (nonunique) global timestampLinearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

CS677: Distributed OSComputer Science Lecture 14, page 14

Mid-term Exam Comments

• Closed book, closed notes, 90 min
• Lectures 1-13 included on the test

– Focus on things taught in class (lectures, in-class discussions)
– Start with lecture notes, read corresponding sections from text
– Supplementary readings are not included on the test.

• Exam structure: few short answer questions, mix of
subjective and “design” questions

• Good luck!

