
1

CS677: Distributed OSComputer Science Lecture 13, page 1

Last Class: Canonical Problems

• Election algorithms
– Ring algorithm

• Distributed synchronization and mutual exclusion

• Distributed transactions

CS677: Distributed OSComputer Science Lecture 13, page 2

Today: More on Transactions

• Implementation issues
– Workspaces
– Writeahead logs

• Concurrency control
– Two phase locks
– Time stamps

2

CS677: Distributed OSComputer Science Lecture 13, page 3

Transaction Primitives

Example: airline reservation
Begin_transaction

if(reserve(NY,Paris)==full) Abort_transaction
if(reserve(Paris,Athens)==full)Abort_transaction
if(reserve(Athens,Delhi)==full) Abort_transaction

End_transaction

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive

CS677: Distributed OSComputer Science Lecture 13, page 4

Distributed Transactions

a) A nested transaction
b) A distributed transaction

3

CS677: Distributed OSComputer Science Lecture 13, page 5

Implementation: Private Workspace

• Each transaction get copies of all files, objects
• Can optimize for reads by not making copies
• Can optimize for writes by copying only what is required
• Commit requires making local workspace global

CS677: Distributed OSComputer Science Lecture 13, page 6

Option 2: Write-ahead Logs

• In-place updates: transaction makes changes directly to all
files/objects

• Write-ahead log: prior to making change, transaction writes to log
on stable storage
– Transaction ID, block number, original value, new value

• Force logs on commit
• If abort, read log records and undo changes [rollback]
• Log can be used to rerun transaction after failure

• Both workspaces and logs work for distributed transactions
• Commit needs to be atomic [will return to this issue in Ch. 7]

4

CS677: Distributed OSComputer Science Lecture 13, page 7

Writeahead Log Example

• a) A transaction
• b) – d) The log before each statement is executed

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;
BEGIN_TRANSACTION;

x = x + 1;
y = y + 2
x = y * y;

END_TRANSACTION;
(a)

CS677: Distributed OSComputer Science Lecture 13, page 8

Concurrency Control

• Goal: Allow several transactions to be executing
simultaneously such that
– Collection of manipulated data item is left in a consistent state

• Achieve consistency by ensuring data items are accessed
in an specific order
– Final result should be same as if each transaction ran sequentially

• Concurrency control can implemented in a layered fashion

5

CS677: Distributed OSComputer Science Lecture 13, page 9

Concurrency Control Implementation

• General organization of managers for handling transactions.

CS677: Distributed OSComputer Science Lecture 13, page 10

Distributed Concurrency Control
• General organization of

managers for handling
distributed transactions.

6

CS677: Distributed OSComputer Science Lecture 13, page 11

Serializability

• Key idea: properly schedule conflicting operations
• Conflict possible if at least one operation is write

– Read-write conflict
– Write-write conflict

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3;Schedule 3

Legalx = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3;Schedule 2

Legalx = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3Schedule 1

CS677: Distributed OSComputer Science Lecture 13, page 12

Optimistic Concurrency Control

• Transaction does what it wants and validates changes prior to
commit
– Check if files/objects have been changed by committed transactions since

they were opened
– Insight: conflicts are rare, so works well most of the time

• Works well with private workspaces
• Advantage:

– Deadlock free
– Maximum parallelism

• Disadvantage:
– Rerun transaction if aborts
– Probability of conflict rises substantially at high loads

• Not used widely

7

CS677: Distributed OSComputer Science Lecture 13, page 13

Two-phase Locking

• Widely used concurrency control technique
• Scheduler acquires all necessary locks in growing phase,

releases locks in shrinking phase
– Check if operation on data item x conflicts with existing locks

• If so, delay transaction. If not, grant a lock on x
– Never release a lock until data manager finishes operation on x
– One a lock is released, no further locks can be granted

• Problem: deadlock possible
– Example: acquiring two locks in different order

• Distributed 2PL versus centralized 2PL

CS677: Distributed OSComputer Science Lecture 13, page 14

Two-Phase Locking

• Two-phase locking.

8

CS677: Distributed OSComputer Science Lecture 13, page 15

Strict Two-Phase Locking

• Strict two-phase locking.

CS677: Distributed OSComputer Science Lecture 13, page 16

Timestamp-based Concurrency Control

• Each transaction Ti is given timestamp ts(Ti)
• If Ti wants to do an operation that conflicts with Tj

– Abort Ti if ts(Ti) < ts(Tj)

• When a transaction aborts, it must restart with a new
(larger) time stamp

• Two values for each data item x
– Max-rts(x): max time stamp of a transaction that read x
– Max-wts(x): max time stamp of a transaction that wrote x

9

CS677: Distributed OSComputer Science Lecture 13, page 17

Reads and Writes using Timestamps

• Readi(x)
– If ts(Ti) < max-wts(x) then Abort Ti

– Else
• Perform Ri(x)
• Max-rts(x) = max(max-rts(x), ts(Ti))

• Writei(x)
– If ts(Ti)<max-rts(x) or ts(Ti)<max-wts(x) then Abort Ti

– Else
• Perform Wi(x)
• Max-wts(x) = ts(Ti)

CS677: Distributed OSComputer Science Lecture 13, page 18

Pessimistic Timestamp Ordering

• Concurrency control using timestamps.

