
1

CS677: Distributed OSComputer Science Lecture 10, page 1

Last Class: Naming

• Name distribution: use hierarchies

• DNS

• X.500 and LDAP

CS677: Distributed OSComputer Science Lecture 10, page 2

Canonical Problems in Distributed Systems

• Time ordering and clock synchronization
• Leader election
• Mutual exclusion
• Distributed transactions
• Deadlock detection

2

CS677: Distributed OSComputer Science Lecture 10, page 3

Clock Synchronization

• Time in unambiguous in centralized systems
– System clock keeps time, all entities use this for time

• Distributed systems: each node has own system clock
– Crystal-based clocks are less accurate (1 part in million)
– Problem: An event that occurred after another may be assigned

an earlier time

CS677: Distributed OSComputer Science Lecture 10, page 4

Physical Clocks: A Primer
• Accurate clocks are atomic oscillators (one part in 1013)
• Most clocks are less accurate (e.g., mechanical watches)

– Computers use crystal-based blocks (one part in million)
– Results in clock drift

• How do you tell time?
– Use astronomical metrics (solar day)

• Coordinated universal time (UTC) – international standard based
on atomic time
– Add leap seconds to be consistent with astronomical time
– UTC broadcast on radio (satellite and earth)
– Receivers accurate to 0.1 – 10 ms

• Need to synchronize machines with a master or with one another

3

CS677: Distributed OSComputer Science Lecture 10, page 5

Clock Synchronization

• Each clock has a maximum drift rate ρ
• 1-ρ <= dC/dt <= 1+ρ

– Two clocks may drift by 2ρ ∆t in time ∆t
– To limit drift to δ => resynchronize every δ/2ρ seconds

CS677: Distributed OSComputer Science Lecture 10, page 6

Cristian’s Algorithm

•Synchronize machines to a time
server with a UTC receiver
•Machine P requests time from
server every δ/2ρseconds

– Receives time t from server, P
sets clock to t+treply where treply
is the time to send reply to P

– Use (treq+treply)/2 as an estimate
of treply

– Improve accuracy by making a
series of measurements

4

CS677: Distributed OSComputer Science Lecture 10, page 7

Berkeley Algorithm

• Used in systems without UTC receiver
– Keep clocks synchronized with one another
– One computer is master, other are slaves
– Master periodically polls slaves for their times

• Average times and return differences to slaves
• Communication delays compensated as in Cristian’s algo

– Failure of master => election of a new master

CS677: Distributed OSComputer Science Lecture 10, page 8

Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock

5

CS677: Distributed OSComputer Science Lecture 10, page 9

Distributed Approaches

• Both approaches studied thus far are centralized
• Decentralized algorithms: use resync intervals

– Broadcast time at the start of the interval
– Collect all other broadcast that arrive in a period S
– Use average value of all reported times
– Can throw away few highest and lowest values

• Approaches in use today
– rdate: synchronizes a machine with a specified machine
– Network Time Protocol (NTP)

• Uses advanced techniques for accuracies of 1-50 ms

CS677: Distributed OSComputer Science Lecture 10, page 10

Logical Clocks

• For many problems, internal consistency of clocks is
important
– Absolute time is less important
– Use logical clocks

• Key idea:
– Clock synchronization need not be absolute
– If two machines do not interact, no need to synchronize them
– More importantly, processes need to agree on the order in

which events occur rather than the time at which they occurred

6

CS677: Distributed OSComputer Science Lecture 10, page 11

Event Ordering

• Problem: define a total ordering of all events that occur
in a system

• Events in a single processor machine are totally ordered
• In a distributed system:

– No global clock, local clocks may be unsynchronized
– Can not order events on different machines using local times

• Key idea [Lamport]
– Processes exchange messages
– Message must be sent before received
– Send/receive used to order events (and synchronize clocks)

CS677: Distributed OSComputer Science Lecture 10, page 12

Happened Before Relation

• If A and B are events in the same process and A executed before B,
then A -> B

• If A represents sending of a message and B is the receipt of this
message, then A -> B

• Relation is transitive:
– A -> B and B -> C => A -> C

• Relation is undefined across processes that do not exhange
messages
– Partial ordering on events

7

CS677: Distributed OSComputer Science Lecture 10, page 13

Event Ordering Using HB

• Goal: define the notion of time of an event such that
– If A-> B then C(A) < C(B)
– If A and B are concurrent, then C(A) <, = or > C(B)

• Solution:
– Each processor maintains a logical clock LCi

– Whenever an event occurs locally at I, LCi = LCi+1
– When i sends message to j, piggyback Lci

– When j receives message from i
• If LCj < LCi then LCj = LCi +1 else do nothing

– Claim: this algorithm meets the above goals

CS677: Distributed OSComputer Science Lecture 10, page 14

Lamport’s Logical Clocks

8

CS677: Distributed OSComputer Science Lecture 10, page 15

Example: Totally-Ordered
Multicasting

• Updating a replicated database and leaving it in an inconsistent
state.

