
1

CS677: Distributed OSComputer Science Lecture 8, page 1

Last Class

• Threads
– User-level, kernel-level, LWPs

• Multiprocessor Scheduling
– Cache affinity
– Preemption while holding spin locks

• Introduction to Migration
– Process migration
– Code migration

CS677: Distributed OSComputer Science Lecture 8, page 2

Today

• Issues in migration

• Distributed agents

• Distributed Scheduling (aka load balancing in distributed
systems)

2

CS677: Distributed OSComputer Science Lecture 8, page 3

Migration models

• Process = code seg + resource seg + execution seg
• Weak versus strong mobility

– Weak => transferred program starts from initial state
• Sender-initiated versus receiver-initiated
• Sender-initiated (code is with sender)

– Client sending a query to database server
– Client should be pre-registered

• Receiver-initiated
– Java applets
– Receiver can be anonymous

CS677: Distributed OSComputer Science Lecture 8, page 4

Who executes migrated entity?

• Code migration:
– Execute in a separate process
– [Applets] Execute in target process

• Process migration
– Remote cloning
– Migrate the process

3

CS677: Distributed OSComputer Science Lecture 8, page 5

Models for Code Migration

• Alternatives for code migration.

CS677: Distributed OSComputer Science Lecture 8, page 6

Do Resources Migrate?

• Depends on resource to process binding
– By identifier: specific web site, ftp server
– By value: Java libraries
– By type: printers, local devices

• Depends on type of “attachments”
– Unattached to any node: data files
– Fastened resources (can be moved only at high cost)

• Database, web sites
– Fixed resources

• Local devices, communication end points

4

CS677: Distributed OSComputer Science Lecture 8, page 7

Resource Migration Actions

• Actions to be taken with respect to the references to local resources
when migrating code to another machine.

• GR: establish global system-wide reference
• MV: move the resources
• CP: copy the resource
• RB: rebind process to locally available resource

GR
GR
RB (or GR)

GR (or MV)
GR (or CP)
RB (or GR, CP)

MV (or GR)
CP (or MV, GR)
RB (or GR, CP)

By identifier
By value
By type

FixedFastenedUnattached

Resource-to machine binding

Process-to-
resource

binding

CS677: Distributed OSComputer Science Lecture 8, page 8

Migration in Heterogeneous Systems
• Systems can be heterogeneous (different architecture, OS)

– Support only weak mobility: recompile code, no run time information
– Strong mobility: recompile code segment, transfer execution segment

[migration stack]
– Virtual machines - interpret source (scripts) or intermediate code [Java]

5

CS677: Distributed OSComputer Science Lecture 8, page 9

Agents

• Software agents
– Autonomous process capable of reacting to, and initiating

changes in its environment, possibly in collaboration
– More than a “process” – can act on its own

• Mobile agent
– Capability to move between machines
– Needs support for strong mobility
– Example: D’Agents (aka Agent TCL)

• Support for heterogeneous systems, uses interpreted
languages

CS677: Distributed OSComputer Science Lecture 8, page 10

Software Agents in Distributed Systems

• Some important properties by which different types of
agents can be distinguished.

Capable of learningNoAdaptive

Can migrate from one site to anotherNoMobile

Has a relatively long lifespanNoContinuous

Can exchange information with users and other agentsYesCommunicative

Initiates actions that affects its environmentYesProactive

Responds timely to changes in its environmentYesReactive

Can act on its ownYesAutonomous

DescriptionCommon to
all agents?Property

6

CS677: Distributed OSComputer Science Lecture 8, page 11

Distributed Scheduling: Motivation

• Distributed system with N workstations
– Model each w/s as identical, independent M/M/1 systems
– Utilization u, P(system idle)=1-u

• What is the probability that at least one system is idle
and one job is waiting?

CS677: Distributed OSComputer Science Lecture 8, page 12

Implications

• Probability high for moderate system utilization
– Potential for performance improvement via load distribution

• High utilization => little benefit
• Low utilization => rarely job waiting
• Distributed scheduling (aka load balancing) potentially useful
• What is the performance metric?

– Mean response time

• What is the measure of load?
– Must be easy to measure
– Must reflect performance improvement

7

CS677: Distributed OSComputer Science Lecture 8, page 13

Design Issues

• Measure of load
– Queue lengths at CPU, CPU utilization

• Types of policies
– Static: decisions hardwired into system
– Dynamic: uses load information
– Adaptive: policy varies according to load

• Preemptive versus non-preemptive
• Centralized versus decentralized
• Stability: λ>µ => instability, λ1+λ2<µ1+µ2=>load balance

– Job floats around and load oscillates

CS677: Distributed OSComputer Science Lecture 8, page 14

Components

• Transfer policy: when to transfer a process?
– Threshold-based policies are common and easy

• Selection policy: which process to transfer?
– Prefer new processes
– Transfer cost should be small compared to execution cost

• Select processes with long execution times
• Location policy: where to transfer the process?

– Polling, random, nearest neighbor
• Information policy: when and from where?

– Demand driven [only if sender/receiver], time-driven
[periodic], state-change-driven [send update if load changes]

8

CS677: Distributed OSComputer Science Lecture 8, page 15

Sender-initiated Policy

• Transfer policy

• Selection policy: newly arrived process
• Location policy: three variations

– Random: may generate lots of transfers => limit max transfers
– Threshold: probe n nodes sequentially

• Transfer to first node below threshold, if none, keep job
– Shortest: poll Np nodes in parallel

• Choose least loaded node below T

CS677: Distributed OSComputer Science Lecture 8, page 16

Receiver-initiated Policy

• Transfer policy: If departing process causes load < T,
find a process from elsewhere

• Selection policy: newly arrived or partially executed
process

• Location policy:
– Threshold: probe up to Np other nodes sequentially

• Transfer from first one above threshold, if none, do nothing
– Shortest: poll n nodes in parallel, choose node with heaviest

load above T

9

CS677: Distributed OSComputer Science Lecture 8, page 17

Symmetric Policies
• Nodes act as both senders and receivers: combine

previous two policies without change
– Use average load as threshold

• Improved symmetric policy: exploit polling information
– Two thresholds: LT, UT, LT <= UT
– Maintain sender, receiver and OK nodes using polling info
– Sender: poll first node on receiver list …
– Receiver: poll first node on sender list …

CS677: Distributed OSComputer Science Lecture 8, page 18

Case Study: V-System (Stanford)

• State-change driven information policy
– Significant change in CPU/memory utilization is broadcast to

all other nodes

• M least loaded nodes are receivers, others are senders
• Sender-initiated with new job selection policy
• Location policy: probe random receiver, if still receiver,

transfer job, else try another

10

CS677: Distributed OSComputer Science Lecture 8, page 19

Sprite (Berkeley)

• Workstation environment => owner is king!
• Centralized information policy: coordinator keeps info

– State-change driven information policy
– Receiver: workstation with no keyboard/mouse activity for 30

seconds and # active processes < number of processors

• Selection policy: manually done by user => workstation
becomes sender

• Location policy: sender queries coordinator
• WS with foreign process becomes sender if user

becomes active: selection policy=> home workstation

CS677: Distributed OSComputer Science Lecture 8, page 20

Sprite (contd)

• Sprite process migration
– Facilitated by the Sprite file system
– State transfer

• Swap everything out
• Send page tables and file descriptors to receiver
• Demand page process in
• Only dependencies are communication-related

– Redirect communication from home WS to receiver

