
1

CS677: Distributed OSComputer Science Lecture 7, page 1

Course Project

• Part 1: Peer-to-peer file sharing with centralized index

Foo.avi: Node1

Bar.c: Node 1

Foo.avi: Node 2

Mypic.gif: Node 3

Indexing server

Peer 1

Peer 2

Peer 3

1: Register (node 1,foo.avi)

2: Lookup(foo.avi)

3: Node1, node2

4: Download (foo.avi)

CS677: Distributed OSComputer Science Lecture 7, page 2

Course Project

• Two entities
– Central indexing server

• List of all files at peers
– Peer (both client and server)

• [client] Search for a file at the indexing server
• Download file from a peer, update indexing server
• [server] listen for download requests and service

– Provide concurrency at the central indexing server and peer

• Feel free to use any prog language and any mechanism
(threads, RPC, RMI, sockets, semaphores…)

2

CS677: Distributed OSComputer Science Lecture 7, page 3

User-level threads

CS677: Distributed OSComputer Science Lecture 7, page 4

Kernel-level threads

• Kernel aware of the presence of threads
– Better scheduling decisions, more expensive
– Better for multiprocessors, more overheads for uniprocessors

3

CS677: Distributed OSComputer Science Lecture 7, page 5

Light-weight Processes

• Several LWPs per heavy-weight process
• User-level threads package

– Create/destroy threads and synchronization primitives

• Multithreaded applications – create multiple threads,
assign threads to LWPs (one-one, many-one, many-many)

• Each LWP, when scheduled, searches for a runnable
thread [two-level scheduling]
– Shared thread table: no kernel support needed

• When a LWP thread block on system call, switch to kernel
mode and OS context switches to another LWP

CS677: Distributed OSComputer Science Lecture 7, page 6

LWP Example

4

CS677: Distributed OSComputer Science Lecture 7, page 7

Thread Packages

• Posix Threads (pthreads)
– Widely used threads package
– Conforms to the Posix standard
– Sample calls: pthread_create,…
– Typical used in C/C++ applications
– Can be implemented as user-level or kernel-level or via LWPs

• Java Threads
– Native thread support built into the language
– Threads are scheduled by the JVM

CS677: Distributed OSComputer Science Lecture 7, page 8

Multiprocessor Scheduling

•Will consider only shared memory multiprocessor

•Salient features:
– One or more caches: cache affinity is important
– Semaphores/locks typically implemented as spin-locks: preemption

during critical sections

5

CS677: Distributed OSComputer Science Lecture 7, page 9

Multiprocessor Scheduling

•Central queue – queue can be a bottleneck

•Distributed queue – load balancing between queue

CS677: Distributed OSComputer Science Lecture 7, page 10

Scheduling

• Common mechanisms combine central queue with per
processor queue (SGI IRIX)

• Exploit cache affinity – try to schedule on the same
processor that a process/thread executed last

• Context switch overhead
– Quantum sizes larger on multiprocessors than uniprocessors

6

CS677: Distributed OSComputer Science Lecture 7, page 11

Parallel Applications on SMPs

• Effect of spin-locks: what happens if preemption occurs
in the middle of a critical section?
– Preempt entire application (co-scheduling)
– Raise priority so preemption does not occur (smart scheduling)
– Both of the above

• Provide applications with more control over its
scheduling
– Users should not have to check if it is safe to make certain

system calls
– If one thread blocks, others must be able to run

CS677: Distributed OSComputer Science Lecture 7, page 12

Code and Process Migration

• Motivation
• How does migration occur?
• Resource migration
• Agent-based system
• Details of process migration

7

CS677: Distributed OSComputer Science Lecture 7, page 13

Motivation

• Key reasons: performance and flexibility
• Process migration (aka strong mobility)

– Improved system-wide performance – better utilization of
system-wide resources

– Examples: Condor, DQS
• Code migration (aka weak mobility)

– Shipment of server code to client – filling forms (reduce
communication, no need to pre-link stubs with client)

– Ship parts of client application to server instead of data from
server to client (e.g., databases)

– Improve parallelism – agent-based web searches

CS677: Distributed OSComputer Science Lecture 7, page 14

Motivation

• Flexibility
– Dynamic configuration of distributed system
– Clients don’t need preinstalled software – download on demand

8

CS677: Distributed OSComputer Science Lecture 7, page 15

Migration models

• Process = code seg + resource seg + execution seg
• Weak versus strong mobility

– Weak => transferred program starts from initial state
• Sender-initiated versus receiver-initiated
• Sender-initiated (code is with sender)

– Client sending a query to database server
– Client should be pre-registered

• Receiver-initiated
– Java applets
– Receiver can be anonymous

CS677: Distributed OSComputer Science Lecture 7, page 16

Who executes migrated entity?

• Code migration:
– Execute in a separate process
– [Applets] Execute in target process

• Process migration
– Remote cloning
– Migrate the process

9

CS677: Distributed OSComputer Science Lecture 7, page 17

Models for Code Migration

• Alternatives for code migration.

CS677: Distributed OSComputer Science Lecture 7, page 18

Do Resources Migrate?

• Depends on resource to process binding
– By identifier: specific web site, ftp server
– By value: Java libraries
– By type: printers, local devices

• Depends on type of “attachments”
– Unattached to any node: data files
– Fastened resources (can be moved only at high cost)

• Database, web sites
– Fixed resources

• Local devices, communication end points

10

CS677: Distributed OSComputer Science Lecture 7, page 19

Resource Migration Actions

• Actions to be taken with respect to the references to local resources
when migrating code to another machine.

• GR: establish global system-wide reference
• MV: move the resources
• CP: copy the resource
• RB: rebind process to locally available resource

GR
GR
RB (or GR)

GR (or MV)
GR (or CP)
RB (or GR, CP)

MV (or GR)
CP (or MV, GR)
RB (or GR, CP)

By identifier
By value
By type

FixedFastenedUnattached

Resource-to machine binding

Process-to-
resource

binding

CS677: Distributed OSComputer Science Lecture 7, page 20

Migration in Heterogeneous Systems
• Systems can be heterogeneous (different architecture, OS)

– Support only weak mobility: recompile code, no run time information
– Strong mobility: recompile code segment, transfer execution segment

[migration stack]
– Virtual machines - interpret source (scripts) or intermediate code [Java]

